Skip to main content

Toolbox for imbalanced dataset in machine learning.

Project description

Travis AppVeyor Codecov CircleCI ReadTheDocs PythonVersion Pypi Gitter

imbalanced-learn

imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-class imbalance. It is compatible with scikit-learn and is part of scikit-learn-contrib projects.

Documentation

Installation documentation, API documentation, and examples can be found on the documentation.

Installation

Dependencies

imbalanced-learn is tested to work under Python 2.7 and Python 3.6, and 3.7. The dependency requirements are based on the last scikit-learn release:

  • scipy(>=0.13.3)

  • numpy(>=1.8.2)

  • scikit-learn(>=0.20)

  • keras 2 (optional)

  • tensorflow (optional)

Additionally, to run the examples, you need matplotlib(>=2.0.0) and pandas(>=0.22).

imbalanced-learn 0.4 is the last version to support Python 2.7

Installation

imbalanced-learn is currently available on the PyPi’s repository and you can install it via pip:

pip install -U imbalanced-learn

The package is release also in Anaconda Cloud platform:

conda install -c conda-forge imbalanced-learn

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:

git clone https://github.com/scikit-learn-contrib/imbalanced-learn.git
cd imbalanced-learn
pip install .

Or install using pip and GitHub:

pip install -U git+https://github.com/scikit-learn-contrib/imbalanced-learn.git

Testing

After installation, you can use pytest to run the test suite:

make coverage

Development

The development of this scikit-learn-contrib is in line with the one of the scikit-learn community. Therefore, you can refer to their Development Guide.

About

If you use imbalanced-learn in a scientific publication, we would appreciate citations to the following paper:

@article{JMLR:v18:16-365,
author  = {Guillaume  Lema{{\^i}}tre and Fernando Nogueira and Christos K. Aridas},
title   = {Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning},
journal = {Journal of Machine Learning Research},
year    = {2017},
volume  = {18},
number  = {17},
pages   = {1-5},
url     = {http://jmlr.org/papers/v18/16-365}
}

Most classification algorithms will only perform optimally when the number of samples of each class is roughly the same. Highly skewed datasets, where the minority is heavily outnumbered by one or more classes, have proven to be a challenge while at the same time becoming more and more common.

One way of addressing this issue is by re-sampling the dataset as to offset this imbalance with the hope of arriving at a more robust and fair decision boundary than you would otherwise.

Re-sampling techniques are divided in two categories:
  1. Under-sampling the majority class(es).

  2. Over-sampling the minority class.

  3. Combining over- and under-sampling.

  4. Create ensemble balanced sets.

Below is a list of the methods currently implemented in this module.

  • Under-sampling
    1. Random majority under-sampling with replacement

    2. Extraction of majority-minority Tomek links [1]

    3. Under-sampling with Cluster Centroids

    4. NearMiss-(1 & 2 & 3) [2]

    5. Condensed Nearest Neighbour [3]

    6. One-Sided Selection [4]

    7. Neighboorhood Cleaning Rule [5]

    8. Edited Nearest Neighbours [6]

    9. Instance Hardness Threshold [7]

    10. Repeated Edited Nearest Neighbours [14]

    11. AllKNN [14]

  • Over-sampling
    1. Random minority over-sampling with replacement

    2. SMOTE - Synthetic Minority Over-sampling Technique [8]

    3. bSMOTE(1 & 2) - Borderline SMOTE of types 1 and 2 [9]

    4. SVM SMOTE - Support Vectors SMOTE [10]

    5. ADASYN - Adaptive synthetic sampling approach for imbalanced learning [15]

  • Over-sampling followed by under-sampling
    1. SMOTE + Tomek links [12]

    2. SMOTE + ENN [11]

  • Ensemble classifier using samplers internally
    1. EasyEnsemble [13]

    2. BalanceCascade [13]

    3. Balanced Random Forest [16]

    4. Balanced Bagging

The different algorithms are presented in the sphinx-gallery.

References:

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imbalanced-learn-0.4.2.tar.gz (169.5 kB view details)

Uploaded Source

Built Distribution

imbalanced_learn-0.4.2-py3-none-any.whl (166.1 kB view details)

Uploaded Python 3

File details

Details for the file imbalanced-learn-0.4.2.tar.gz.

File metadata

  • Download URL: imbalanced-learn-0.4.2.tar.gz
  • Upload date:
  • Size: 169.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for imbalanced-learn-0.4.2.tar.gz
Algorithm Hash digest
SHA256 f830ebc2042b642648bfe48a9253b45019ab15a5d0ac0bbdd7261e304e71609d
MD5 436af717dd957c2008b87f1f9596a458
BLAKE2b-256 15c59c606b2765712260836e451556f2f22a608d129ff526e654f9d6efcde2c2

See more details on using hashes here.

File details

Details for the file imbalanced_learn-0.4.2-py3-none-any.whl.

File metadata

File hashes

Hashes for imbalanced_learn-0.4.2-py3-none-any.whl
Algorithm Hash digest
SHA256 a2c60bc20fef5793270ad2336752d05f4b0988a251168e4baf7aa8932c23a124
MD5 9f352c85b40d48cab9be9a6b20aa17a7
BLAKE2b-256 c5eaf027ceb21114abe8189a2804640b2d5dd49a7a271c4814695482c5bc94d8

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page