Skip to main content

Standard and Hybrid Deep Learning Multivariate-Multi-Step & Univariate-Multi-Step Time Series Forecasting.

Project description

imbrium Downloads PyPi GitHub license PyPI pyversions

Status

Build Status
MAIN BUILD master
DEV BUILD development

Pip install

pip install imbrium

Standard and Hybrid Deep Learning Multivariate-Multi-Step & Univariate-Multi-Step Time Series Forecasting.

                      ██╗███╗░░░███╗██████╗░██████╗░██╗██╗░░░██╗███╗░░░███╗
                        ║████╗░████║██╔══██╗██╔══██╗██║██║░░░██║████╗░████║
                      ██║██╔████╔██║██████╦╝██████╔╝██║██║░░░██║██╔████╔██║
                      ██║██║╚██╔╝██║██╔══██╗██╔══██╗██║██║░░░██║██║╚██╔╝██║
                      ██║██║░╚═╝░██║██████╦╝██║░░██║██║╚██████╔╝██║░╚═╝░██║
                      ╚═╝╚═╝░░░░░╚═╝╚═════╝░╚═╝░░╚═╝╚═╝░╚═════╝░╚═╝░░░░░╚═╝

Introduction to imbrium

imbrium is a deep learning library that specializes in time series forecasting. Its primary objective is to provide a user-friendly repository of deep learning architectures for this purpose. The focus is on simplifying the process of creating and applying these architectures, with the goal of allowing users to create complex architectures without having to build them from scratch. Instead, the emphasis shifts to high-level configuration of the architectures.

imbrium Summary

imbrium is designed to simplify the application of deep learning models for time series forecasting. The library offers a variety of pre-built architectures. The user retains full control over the configuration of each layer, including the number of neurons, the type of activation function, loss function, optimizer, and metrics applied. This allows for the flexibility to adapt the architecture to the specific needs of the forecast task at hand. Imbrium also offers a user-friendly interface for training and evaluating these models, making it easy to quickly iterate and test different configurations.

imbrium uses the sliding window approach to generate forecasts. The sliding window approach in time series forecasting involves moving a fixed-size window - steps_past through historical data, using the data within the window as input features. The next data points outside the window are used as the target variables - steps_future. This method allows the model to learn sequential patterns and trends in the data, enabling accurate predictions for future points in the time series.

Get started with imbrium

Expand

Note, if you choose to use TensorBoard, run the following command to display the results:

 tensorboard --logdir logs/
Univariate Pure Predictors
from imbrium import PureUni

# create a PureUni object (numpy array expected)
predictor = PureUni(target = target_numpy_array, evaluation_split = 0.1, validation_split = 0.2)

# the following models are available for a PureUni objects;

# create and fit a muti-layer perceptron model
predictor.create_fit_mlp(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        dense_block_one = 1,
        dense_block_two = 1,
        dense_block_three = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {"neurons": 50, "activation": "relu", "regularization": 0.0}
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a recurrent neural network model
predictor.create_fit_rnn(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        rnn_block_one = 1,
        rnn_block_two = 1,
        rnn_block_three = 1,
        metrics = "mean_squared_error",
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {"neurons": 50, "activation": "relu", "regularization": 0.0}
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a long short-term neural network model
predictor.create_fit_lstm(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        lstm_block_one = 1,
        lstm_block_two = 1,
        lstm_block_three = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {"neurons": 50, "activation": "relu", "regularization": 0.0}
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional neural network
predictor = create_fit_cnn(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        dense_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a gated recurrent unit neural network
predictor.create_fit_gru(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        gru_block_one = 1,
        gru_block_two = 1,
        gru_block_three = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a bidirectional recurrent neural network
predictor.create_fit_birnn(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        birnn_block_one = 1,
        rnn_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a bidirectional long short-term memory neural network
predictor.create_fit_bilstm(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        bilstm_block_one = 1,
        lstm_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a bidirectional gated recurrent neural network
predictor.create_fit_bigru(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        bigru_block_one = 1,
        gru_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# you can add additional layer to the defualt layers by increasing the layer block count and adding the configuration for the layer in the layer_config dictionary. Please note that the last layer should not have a dropout key.

# in addition, you can add to all models early stopping arguments:

monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False,
start_from_epoch=0


# instpect model structure
predictor.model_blueprint()

# evaluate model performance on testing data
predictor.evaluate_model(board=False)

# get model performance on testing data
predictor.show_evaluation()

# insptect keras model performances via (access dictionary via history key):
predictor.show_performance()

# make predictions via (numpy array expected):
predictor.predict(data)

# save predictor via:
predictor.freeze(absolute_path)

# load saved predictor via:
predictor.retrieve(location)
Multivariate Pure Predictors
from imbrium import PureMulti

# create a PureMulti object (numpy array expected)
predictor = PureMulti(target = target_numpy_array, features = features_numpy_array, evaluation_split = 0.1, validation_split = 0.2)

# the following models are available for a PureMulti objects;

# create and fit a muti-layer perceptron model
predictor.create_fit_mlp(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        dense_block_one = 1,
        dense_block_two = 1,
        dense_block_three = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {"neurons": 50, "activation": "relu", "regularization": 0.0}
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a recurrent neural network model
predictor.create_fit_rnn(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        rnn_block_one = 1,
        rnn_block_two = 1,
        rnn_block_three = 1,
        metrics = "mean_squared_error",
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {"neurons": 50, "activation": "relu", "regularization": 0.0}
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a long short-term neural network model
predictor.create_fit_lstm(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        lstm_block_one = 1,
        lstm_block_two = 1,
        lstm_block_three = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {"neurons": 50, "activation": "relu", "regularization": 0.0}
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional neural network
predictor = create_fit_cnn(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        dense_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a gated recurrent unit neural network
predictor.create_fit_gru(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        gru_block_one = 1,
        gru_block_two = 1,
        gru_block_three = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a bidirectional recurrent neural network
predictor.create_fit_birnn(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        birnn_block_one = 1,
        rnn_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a bidirectional long short-term memory neural network
predictor.create_fit_bilstm(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        bilstm_block_one = 1,
        lstm_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a bidirectional gated recurrent neural network
predictor.create_fit_bigru(
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        bigru_block_one = 1,
        gru_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "neurons": 50,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# you can add additional layer to the defualt layers by increasing the layer block count and adding the configuration for the layer in the layer_config dictionary. Please note that the last layer should not have a dropout key.

# in addition, you can add to all models early stopping arguments:

monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False,
start_from_epoch=0


# instpect model structure
predictor.model_blueprint()

# evaluate model performance on testing data
predictor.evaluate_model(board=False)

# get model performance on testing data
predictor.show_evaluation()

# insptect keras model performances via (access dictionary via history key):
predictor.show_performance()

# make predictions via (numpy array expected):
predictor.predict(data)

# save predictor via:
predictor.freeze(absolute_path)

# load saved predictor via:
predictor.retrieve(location)
Univariate Hybrid Predictors
from imbrium import HybridUni

# create a HybridUni object (numpy array expected)
predictor = HybridUni(target = target_numpy_array, evaluation_split = 0.1, validation_split = 0.2)

# the following models are available for a HybridUni objects:
# create and fit a convolutional recurrent neural network
predictor.create_fit_cnnrnn(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        rnn_block_one = 1,
        rnn_block_two = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional long short-term memory neural network
predictor.create_fit_cnnlstm(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        lstm_block_one = 1,
        lstm_block_two = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional gated recurrent unit neural network
predictor.create_fit_cnngru(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        gru_block_one = 1,
        gru_block_two = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional bidirectional recurrent neural network
predictor.create_fit_cnnbirnn(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        birnn_block_one = 1,
        rnn_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional bidirectional long short-term neural network
predictor.create_fit_cnnbilstm(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        bilstm_block_one = 1,
        lstm_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional bidirectional gated recurrent neural network
predictor.create_fit_cnnbigru(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        bigru_block_one = 1,
        gru_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# you can add additional layer to the defualt layers by increasing the layer block count and adding the configuration for the layer in the layer_config dictionary. Please note that the last layer should not have a dropout key.

# in addition, you can add to all models early stopping arguments:

monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False,
start_from_epoch=0


# instpect model structure
predictor.model_blueprint()

# evaluate model performance on testing data
predictor.evaluate_model(board=False)

# get model performance on testing data
predictor.show_evaluation()

# insptect keras model performances via (access dictionary via history key):
predictor.show_performance()

# make predictions via (numpy array expected):
# - when loading/retrieving a saved model, provide sub_seq, steps_past, steps_future in the predict method!
predictor.predict(data, sub_seq=None, steps_past=None, steps_future=None)

# save predictor via:
predictor.freeze(absolute_path)

# load saved predictor via:
predictor.retrieve(location)
Multivariate Hybrid Predictors
from imbrium import HybridMulti

# create a HybridMulti object (numpy array expected)
predictor = HybridMulti(target = target_numpy_array, features = features_numpy_array, evaluation_split = 0.1, validation_split = 0.2)

# the following models are available for a HybridMulti objects:
# create and fit a convolutional recurrent neural network
predictor.create_fit_cnnrnn(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        rnn_block_one = 1,
        rnn_block_two = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional long short-term memory neural network
predictor.create_fit_cnnlstm(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        lstm_block_one = 1,
        lstm_block_two = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional gated recurrent unit neural network
predictor.create_fit_cnngru(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        gru_block_one = 1,
        gru_block_two = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional bidirectional recurrent neural network
predictor.create_fit_cnnbirnn(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        birnn_block_one = 1,
        rnn_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional bidirectional long short-term neural network
predictor.create_fit_cnnbilstm(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        bilstm_block_one = 1,
        lstm_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# create and fit a convolutional bidirectional gated recurrent neural network
predictor.create_fit_cnnbigru(
        sub_seq,
        steps_past,
        steps_future,
        optimizer = "adam",
        optimizer_args = None,
        loss = "mean_squared_error",
        metrics = "mean_squared_error",
        conv_block_one = 1,
        conv_block_two = 1,
        bigru_block_one = 1,
        gru_block_one = 1,
        layer_config = {
            "layer0": {
                "config": {
                    "filters": 64,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer1": {
                "config": {
                    "filters": 32,
                    "kernel_size": 1,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer2": {
                "config": {
                    "pool_size": 2,
                }
            },
            "layer3": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                    "dropout": 0.0,
                }
            },
            "layer4": {
                "config": {
                    "neurons": 32,
                    "activation": "relu",
                    "regularization": 0.0,
                }
            },
        },
        epochs = 100,
        batch_size = None,
        show_progress = 1,
        board = False,
)

# you can add additional layer to the defualt layers by increasing the layer block count and adding the configuration for the layer in the layer_config dictionary. Please note that the last layer should not have a dropout key.

# in addition, you can add to all models early stopping arguments:

monitor='val_loss',
min_delta=0,
patience=0,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=False,
start_from_epoch=0


# instpect model structure
predictor.model_blueprint()

# evaluate model performance on testing data
predictor.evaluate_model(board=False)

# get model performance on testing data
predictor.show_evaluation()

# insptect keras model performances via (access dictionary via history key):
predictor.show_performance()

# make predictions via (numpy array expected):
# - when loading/retrieving a saved model, provide sub_seq, steps_past, steps_future in the predict method!
predictor.predict(data, sub_seq=None, steps_past=None, steps_future=None)

# save predictor via:
predictor.freeze(absolute_path)

# load saved predictor via:
predictor.retrieve(location)

Use Case: scaling + hyper parameter optimization

https://github.com/maxmekiska/ImbriumTesting-Demo/blob/main/use-case-1.ipynb

Integration tests

https://github.com/maxmekiska/ImbriumTesting-Demo/blob/main/IntegrationTest.ipynb

References

Expand

Brwonlee, J., 2016. Display deep learning model training history in keras [Online]. Available from: https://machinelearningmastery.com/display-deep- learning-model-training-history-in-keras/.

Brwonlee, J., 2018a. How to develop convolutional neural network models for time series forecasting [Online]. Available from: https://machinelearningmastery.com/how-to-develop-convolutional- neural-network-models-for-time-series-forecasting/.

Brwonlee, J., 2018b. How to develop lstm models for time series forecasting [Online]. Available from: https://machinelearningmastery.com/how-to-develop- lstm-models-for-time-series-forecasting/.

Brwonlee, J., 2018c. How to develop multilayer perceptron models for time series forecasting [Online]. Available from: https://machinelearningmastery.com/how-to-develop-multilayer- perceptron-models-for-time-series-forecasting/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imbrium-3.1.0.tar.gz (30.2 kB view details)

Uploaded Source

Built Distribution

imbrium-3.1.0-py3-none-any.whl (28.0 kB view details)

Uploaded Python 3

File details

Details for the file imbrium-3.1.0.tar.gz.

File metadata

  • Download URL: imbrium-3.1.0.tar.gz
  • Upload date:
  • Size: 30.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for imbrium-3.1.0.tar.gz
Algorithm Hash digest
SHA256 c8df8729b9886e601fbc1e0af48d5d287fe0c597514a509e2213ab9e08717879
MD5 c67fbaaee974cccf47c412902db207c4
BLAKE2b-256 68237ffc3dc41ad20b020ca8304ff9f7d9586fb59a60646dbfc8e15cc31133f1

See more details on using hashes here.

File details

Details for the file imbrium-3.1.0-py3-none-any.whl.

File metadata

  • Download URL: imbrium-3.1.0-py3-none-any.whl
  • Upload date:
  • Size: 28.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for imbrium-3.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 fb2db4f8e9028d1209c902996d4806a86d1cc6534c8e4db23fcd13a2d76af18a
MD5 f5119dfc576a91f236880f8defdf75b5
BLAKE2b-256 4e2b9d1e0f38cc9d86931dec7347df509f1fc49665ad2b8727eb7c9cc5bfad92

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page