Skip to main content

Standard and Hybrid Deep Learning Multivariate-Multi-Step & Univariate-Multi-Step Time Series Forecasting.

Project description

imbrium

Pip install

pip install imbrium

Standard and Hybrid Deep Learning Multivariate-Multi-Step & Univariate-Multi-Step Time Series Forecasting.

                  ██╗███╗░░░███╗██████╗░██████╗░██╗██╗░░░██╗███╗░░░███╗
                  ██║████╗░████║██╔══██╗██╔══██╗██║██║░░░██║████╗░████║
                  ██║██╔████╔██║██████╦╝██████╔╝██║██║░░░██║██╔████╔██║
                  ██║██║╚██╔╝██║██╔══██╗██╔══██╗██║██║░░░██║██║╚██╔╝██║
                  ██║██║░╚═╝░██║██████╦╝██║░░██║██║╚██████╔╝██║░╚═╝░██║
                  ╚═╝╚═╝░░░░░╚═╝╚═════╝░╚═╝░░╚═╝╚═╝░╚═════╝░╚═╝░░░░░╚═╝

About imbrium

The objective of this library is to become a repository of deep learning architectures which specialize in time series forecasting. The main focus lies on making the process of creating and applying deep learning architectures user friendly. Ideally, complex architectures can be created without the user needing to build any part of the architecture from scratch. From a user perspective the focus will shift from architecture building to solely high level, low-code architecture configuration.

Contribute

Feel free to contribute to imbrium. Any contributions are most welcome. Especially new contributed architectures will help imbrium to achieve its objectives more quickly. Imbrium does not only need to be based on Keras but could further be extended to Pytorch or any other machine learning framework.

Recently, graph based neural networks have shown great promise when applied to time series forecasting tasks. If you are familiar with graph based neural network time series forecasting, please feel free to contribute such architectures to imbrium.

imbrium 1.0.0 changes

The follwoing important name changes have been performed:

- univarstandard => univarpure
- BasicMultStepUniVar => PureUni
- univarhybrid => univarhybrid (unchanged)
- HybridMultStepUniVar => HybridUni
- multivarstandard => multivarpure
- BasicMultSTepMultVar => PureMulti
- multivarhybrid => multivarhybrid (unchanged)
- HybridMultStepMultVar => HybridMulti

Try imbrium

Please ignore all cudart dlerror/warnings, since no GPU is setup in this jupyter binder environment:

Binder

For more testing, please visit the dedicated Demo & Testing repository at: https://github.com/maxmekiska/ImbriumTesting-Demo

Basics

This library aims to ease the application of deep learning models for time series forecasting. Multiple architectures are offered with a fixed number of layers however the user has full control over the number of neurons per layer, activation function type, loss function type, optimizer type and metrics applied.

The library differentiates between two modes:

  1. Univariate-Multistep forecasting
  2. Multivariate-Multistep forecasting

These two main modes are further divided based on the complexity of the underlying model architectures:

  1. Pure
  2. Hybrid

Pure supports the following architectures:

  • Multilayer perceptron (MLP)
  • Recurrent neural network (RNN)
  • Long short-term memory (LSTM)
  • Gated recurrent unit (GRU)
  • Convolutional neural network (CNN)
  • Bidirectional recurrent neural network (BI-RNN)
  • Bidirectional long-short term memory (BI-LSTM)
  • Bidirectional gated recurrent unit (BI-GRU)
  • Encoder-Decoder recurrent neural network
  • Encoder-Decoder long-short term memory
  • Encoder-Decoder convolutional neural network (Encoding via CNN, Decoding via GRU)
  • Encoder-Decoder gated recurrent unit

Hybrid supports:

  • Convolutional neural network + recurrent neural network (CNN-RNN)
  • Convolutional neural network + Long short-term memory (CNN-LSTM)
  • Convolutional neural network + Gated recurrent unit (CNN-GRU)
  • Convolutional neural network + Bidirectional recurrent neural network (CNN-BI-RNN)
  • Convolutional neural network + Bidirectional long-short term memory (CNN-BI-LSTM)
  • Convolutional neural network + Bidirectional gated recurrent unit (CNN-BI-GRU)

Please note that each model is supported by a prior input data pre-processing procedure which allows to set a look-back period, look-forward period, sub-sequences division (only for hybrid architectures) and data scaling method.

The following scikit-learn scaling procedures are supported:

  • StandardScaler
  • MinMaxScaler
  • MaxAbsScaler
  • Normalizing ([0, 1])
  • None (raw data input)

During training/fitting, callback conditions can be defined to guard against overfitting.

Trained models can furthermore be saved or loaded if the user wishes to do so.

How to use imbrium?

Attention: Typing has been left in the below examples to ease the configuration readability.

Univariate Models:

  1. Univariate-Multistep forecasting - Pure architectures
from imbrium.predictors.univarpure import PureUni

predictor = PureUni(steps_past: int, steps_future: int, data = DataFrame(),
                    scale: str = '')

# Choose between one of the architectures:

predictor.create_mlp(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (25,'relu'),
                                          'layer2': (25, 'relu')})

predictor.create_rnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (40, 'relu'), 'layer1': (50,'relu'),
                                           'layer2': (50, 'relu')})

predictor.create_lstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                      metrics: str = 'mean_squared_error',
                      layer_config: dict = {'layer0': (40, 'relu'), 'layer1': (50,'relu'),
                                            'layer2': (50, 'relu')})

predictor.create_gru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (40, 'relu'), 'layer1': (50,'relu'),
                                           'layer2': (50, 'relu')})

predictor.create_cnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu')})

predictor.create_birnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                       metrics: str = 'mean_squared_error',
                       layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (50, 'relu')})

predictor.create_bilstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                        metrics: str = 'mean_squared_error',
                        layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (50, 'relu')})

predictor.create_bigru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                       metrics: str = 'mean_squared_error',
                       layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (50, 'relu')})

predictor.create_encdec_rnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                            metrics: str = 'mean_squared_error',
                            layer_config: dict = {'layer0': (100, 'relu'), 'layer1': (50, 'relu'), 'layer2': (50, 'relu'), 'layer3': (100, 'relu')})

predictor.create_encdec_lstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                             metrics: str = 'mean_squared_error',
                             layer_config: dict = {'layer0': (100, 'relu'), 'layer1': (50, 'relu'), 'layer2': (50, 'relu'), 'layer3': (100, 'relu')})

predictor.create_encdec_cnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                            metrics: str = 'mean_squared_error',
                            layer_config: dict = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (100, 'relu')})

predictor.create_encdec_gru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                            metrics: str = 'mean_squared_error',
                            layer_config: dict = {'layer0': (100, 'relu'), 'layer1': (50, 'relu'), 'layer2': (50, 'relu'), 'layer3': (100, 'relu')})

# Fit the predictor object - more callback settings at:

# https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

predictor.fit_model(epochs: int, show_progress: int = 1, validation_split: float = 0.20,
                    batch_size: int = 10, monitor='loss', patience=3)

# Have a look at the model performance
predictor.show_performance()

# Make a prediction based on new unseen data
predictor.predict(data: array)

# Safe your model:
predictor.save_model()

# Load a model:
# Step 1: initialize a new predictor object with same characteristics as model to load
# Step 2: Do not pass in any data
# Step 3: Invoke the method load_model()
# optional Step 4: Use the setter method set_model_id(name: str) to give model a name

loading_predictor = PureUni(steps_past: int, steps_future: int)
loading_predictor.load_model(location: str)
loading_predictor.set_model_id(name: str)
  1. Univariate-Multistep forecasting - Hybrid architectures
from imbrium.predictors.univarhybrid import HybridUni

predictor = HybridUni(sub_seq: int, steps_past: int, steps_future: int, data =          DataFrame(), scale: str = '')

# Choose between one of the architectures:

predictor.create_cnnrnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                        metrics: str = 'mean_squared_error',
                        layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnlstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                         metrics: str = 'mean_squared_error',
                         layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnngru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                        metrics: str = 'mean_squared_error',
                        layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnbirnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                          metrics: str = 'mean_squared_error',
                          layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnbilstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                           metrics: str = 'mean_squared_error',
                           layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnbigru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                          metrics: str = 'mean_squared_error',
                          layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

# Fit the predictor object - more callback settings at:

# https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

predictor.fit_model(epochs: int, show_progress: int = 1, validation_split: float = 0.20,
                    batch_size: int = 10, monitor='loss', patience=3)

# Have a look at the model performance
predictor.show_performance()

# Make a prediction based on new unseen data
predictor.predict(data: array)

# Safe your model:
predictor.save_model()

# Load a model:
# Step 1: initialize a new predictor object with same characteristics as model to load
# Step 2: Do not pass in any data
# Step 3: Invoke the method load_model()
# optional Step 4: Use the setter method set_model_id(name: str) to give model a name

loading_predictor =  HybridUni(sub_seq: int, steps_past: int, steps_future: int)
loading_predictor.load_model(location: str)
loading_predictor.set_model_id(name: str)

Multivariate Models:

  1. Multivariate-Multistep forecasting - Pure architectures
from imbrium.predictors.multivarpure import PureMulti

# please make sure that the target feature is the first variable in the feature list
predictor = PureMulti(steps_past: int, steps_future: int, data = DataFrame(), features = [], scale: str = '')

# Choose between one of the architectures:

predictor.create_mlp(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (25,'relu'),
                                           'layer2': (25, 'relu')})

predictor.create_rnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (40, 'relu'), 'layer1': (50,'relu'),
                                           'layer2': (50, 'relu')})

predictor.create_lstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                      metrics: str = 'mean_squared_error',
                      layer_config: dict = {'layer0': (40, 'relu'), 'layer1': (50,'relu'),
                                            'layer2': (50, 'relu')})

predictor.create_gru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (40, 'relu'), 'layer1': (50,'relu'),
                                           'layer2': (50, 'relu')})

predictor.create_cnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                     metrics: str = 'mean_squared_error',
                     layer_config: dict = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu')})

predictor.create_birnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                       metrics: str = 'mean_squared_error',
                       layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (50, 'relu')})

predictor.create_bilstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                        metrics: str = 'mean_squared_error',
                        layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (50, 'relu')})

predictor.create_bigru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                       metrics: str = 'mean_squared_error',
                       layer_config: dict = {'layer0': (50, 'relu'), 'layer1': (50, 'relu')})

predictor.create_encdec_rnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                            metrics: str = 'mean_squared_error',
                            layer_config: dict = {'layer0': (100, 'relu'), 'layer1': (50, 'relu'), 'layer2': (50, 'relu'), 'layer3': (100, 'relu')})

predictor.create_encdec_lstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                             metrics: str = 'mean_squared_error',
                             layer_config: dict = {'layer0': (100, 'relu'), 'layer1': (50, 'relu'), 'layer2': (50, 'relu'), 'layer3': (100, 'relu')})

predictor.create_encdec_cnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                            metrics: str = 'mean_squared_error',
                            layer_config: dict = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (100, 'relu')})

predictor.create_encdec_gru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                            metrics: str = 'mean_squared_error',
                            layer_config: dict = {'layer0': (100, 'relu'), 'layer1': (50, 'relu'), 'layer2': (50, 'relu'), 'layer3': (100, 'relu')})

# Fit the predictor object - more callback settings at:

# https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

predictor.fit_model(epochs: int, show_progress: int = 1, validation_split: float = 0.20,
                    batch_size: int = 10, monitor='loss', patience=3)

# Have a look at the model performance
predictor.show_performance()

# Make a prediction based on new unseen data
predictor.predict(data: array)

# Safe your model:
predictor.save_model()

# Load a model:
# Step 1: initialize a new predictor object with same characteristics as model to load
# Step 2: Do not pass in any data
# Step 3: Invoke the method load_model()
# optional Step 4: Use the setter method set_model_id(name: str) to give model a name

loading_predictor = PureMulti(steps_past: int, steps_future: int)
loading_predictor.load_model(location: str)
loading_predictor.set_model_id(name: str)
  1. Multivariate-Multistep forecasting - Hybrid architectures
from imbrium.predictors.multivarhybrid import HybridMulti

# please make sure that the target feature is the first variable in the feature list
predictor = HybridMulti(sub_seq: int, steps_past: int, steps_future: int, data = DataFrame(), features:list = [], scale: str = '')

# Choose between one of the architectures:

predictor.create_cnnrnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                        metrics: str = 'mean_squared_error',
                        layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnlstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                         metrics: str = 'mean_squared_error',
                         layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnngru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                        metrics: str = 'mean_squared_error',
                        layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnbirnn(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                          metrics: str = 'mean_squared_error',
                          layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnbilstm(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                           metrics: str = 'mean_squared_error',
                           layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

predictor.create_cnnbigru(optimizer: str = 'adam', loss: str = 'mean_squared_error',
                          metrics: str = 'mean_squared_error',
                          layer_config = {'layer0': (64, 1, 'relu'), 'layer1': (32, 1, 'relu'), 'layer2': (2), 'layer3': (50, 'relu'), 'layer4': (25, 'relu')})

# Fit the predictor object - more callback settings at:

# https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/EarlyStopping

predictor.fit_model(epochs: int, show_progress: int = 1, validation_split: float = 0.20,
                    batch_size: int = 10, monitor='loss', patience=3)

# Have a look at the model performance
predictor.show_performance()

# Make a prediction based on new unseen data
predictor.predict(data: array)

# Safe your model:
predictor.save_model()

# Load a model:
# Step 1: initialize a new predictor object with same characteristics as model to load
# Step 2: Do not pass in any data
# Step 3: Invoke the method load_model()
# optional Step 4: Use the setter method set_model_id(name: str) to give model a name

loading_predictor =  HybridMulti(sub_seq: int, steps_past: int, steps_future: int)
loading_predictor.load_model(location: str)
loading_predictor.set_model_id(name: str)

References

Brwonlee, J., 2016. Display deep learning model training history in keras [Online]. Available from: https://machinelearningmastery.com/display-deep- learning-model-training-history-in-keras/.

Brwonlee, J., 2018a. How to develop convolutional neural network models for time series forecasting [Online]. Available from: https://machinelearningmastery.com/how-to-develop-convolutional- neural-network-models-for-time-series-forecasting/.

Brwonlee, J., 2018b. How to develop lstm models for time series forecasting [Online]. Available from: https://machinelearningmastery.com/how-to-develop- lstm-models-for-time-series-forecasting/.

Brwonlee, J., 2018c. How to develop multilayer perceptron models for time series forecasting [Online]. Available from: https://machinelearningmastery.com/how-to-develop-multilayer- perceptron-models-for-time-series-forecasting/.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imbrium-1.0.0.tar.gz (17.9 kB view hashes)

Uploaded Source

Built Distribution

imbrium-1.0.0-py3-none-any.whl (24.1 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page