Skip to main content

A tool for handling and downloading IMD gridded data

Project description

imdlib

Build Status GitHub PyPI Conda Downloads

This is a python package to download and handle binary grided data from Indian Meterological department (IMD).

Installation

pip install imdlib

or

conda install -c iamsaswata imdlib

or

pip install git+https://github.com/iamsaswata/imdlib.git

Documentation

Tutorial Tutorial

Video Tutorial

IMDLIB - Albedo Foundation

License

imdlib is available under the MIT license.

Citation

If you are using imdlib and would like to cite it in academic publication, we would certainly appreciate it. We recommend to use one of these two DOIs for this purpose:

Nandi, S., Patel, P., and Swain, S. (2024). IMDLIB: An open-source library for retrieval, processing and spatiotemporal exploratory assessments of gridded meteorological observation datasets over India. Environmental Modelling and Software, 71 (105869), [DOI]

Nandi, S., Patel, P., and Swain, S. (2022). IMDLIB: A python library for IMD gridded data. Zenodo. [DOI]

DOI

Publications using IMDLIB

Swain, S., Mishra, P.K., Nandi, S., Pradhan, B., Sahoo, S., Al-Ansari, A. (2024). A simplistic approach for monitoring meteorological drought over arid regions: a case study of Rajasthan, India. Applied Water Science, 14, 36. [DOI]

Pandey, H.K., Singh, V.K., Singh, R.P. et al. (2023). Soil Loss Estimation Using RUSLE in Hard Rock Terrain: a Case Study of Bundelkhand, India. Water Conserv Sci Eng 8, 55. [DOI]

Vage, S., Gupta, T., Roy, S. (2023). Impact Analysis of Climate Change on Floods in an Indian Region Using Machine Learning. In: ICANN 2023, 14261. [DOI]

Garg, N., Negi, S., Nagar, R., Rao, S., & KR, S. (2023). Multivariate multi-step LSTM model for flood runoff prediction: a case study on the Godavari River Basin in India. Journal of Water and Climate Change, [DOI]

Bora, S., & Hazarika, A. (2023). Rainfall time series forecasting using ARIMA model. In 2023 ATCON-1, (pp. 1-5). IEEE, [DOI]

Panja, A., Garai, S., Zade, S., Veldandi, A., Sahani, S., & Maiti, S. (2023). Climate Data Extraction for Social Science Research: A Step by Step Process. Social Science Dimensions of Climate Resilient Agriculture, [ISBN] (ISBN: 978-81-964762-1-2)

Chakra, S., Ganguly, A., Oza, H., Padhya, V., Pandey, A., & Deshpande, R. D. (2023). Multidecadal summer monsoon rainfall trend reversals in South Peninsular India: a new approach to examining long-term rainfall dataset. Journal of Hydrology, [DOI].

Sardar, P., and Samadder, S. R. (2023).  Long-term ecological vulnerability assessment of indian sundarban region under present and future climatic conditions under CMIP6 model. Ecological Informatics. [DOI]

Roy, P. K., Ghosh, A., Basak, S. K., Mohinuddin, S., & Roy M. B. (2023).  Analysing the Role of AHP Model to Identify Flood Hazard Zonation in a Coastal Island, India. Journal of the Indian Society of Remote Sensing Article, 1-15. [DOI]

Kundu, M., Zafor, A., & Maiti, R. (2023). Assessing the nature of potential groundwater zones through machine learning (ML) algorithm in tropical plateau region, West Bengal, India. Acta Geophysica, 1-16. [DOI]

Venkatesh, S., Kirubakaran, T., Ayaz, R. M., Umar, S. M., & Parimalarenganayaki, S. (2023). Non-parametric Approaches to Identify Rainfall Pattern in Semi-Arid Regions: Ranipet, Vellore, and Tirupathur Districts, Tamil Nadu, India. In River Dynamics and Flood Hazards (pp. 507-525). Springer, Singapore. [DOI]

Swain, S., Mishra, S. K., Pandey, A., & Dayal, D. (2022). Assessment of drought trends and variabilities over the agriculture-dominated Marathwada Region, India. Environmental Monitoring and Assessment, 194(12), 1-18. [DOI]

Swain, S., Mishra, S. K., Pandey, A., Dayal, D., & Srivastava, P. K. (2022). Appraisal of historical trends in maximum and minimum temperature using multiple non-parametric techniques over the agriculture-dominated Narmada Basin, India. Environmental Monitoring and Assessment, 194(12), 1-23. [DOI]

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imdlib-0.1.20.tar.gz (21.7 kB view details)

Uploaded Source

Built Distribution

imdlib-0.1.20-py3-none-any.whl (21.2 kB view details)

Uploaded Python 3

File details

Details for the file imdlib-0.1.20.tar.gz.

File metadata

  • Download URL: imdlib-0.1.20.tar.gz
  • Upload date:
  • Size: 21.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for imdlib-0.1.20.tar.gz
Algorithm Hash digest
SHA256 0ea2d660c3749252b7b2157e19a6232a8a7e7e2a501ff28064da9b40e7d3823b
MD5 47f1f3c9f15146ba5c3f4891de4e6459
BLAKE2b-256 d41f4e801e8cd89a3aa194c7b378a90152504331949b1b6fc25f29f0cc854ef7

See more details on using hashes here.

File details

Details for the file imdlib-0.1.20-py3-none-any.whl.

File metadata

  • Download URL: imdlib-0.1.20-py3-none-any.whl
  • Upload date:
  • Size: 21.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.2

File hashes

Hashes for imdlib-0.1.20-py3-none-any.whl
Algorithm Hash digest
SHA256 b73a4b8f0b91730377d020a09ba27faf6e924766bb32457f209dea1a4966d9a8
MD5 c0b1dade7e16d320a947fbb6f00ebd0c
BLAKE2b-256 6fe3dd7501d84dd06373e0c3db94aea55c55fcfdf55c4c20371688e3e92728ee

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page