Skip to main content

Convert images to unicode based on font templates. Especially usable in terminal.

Project description

img2unicode

A tool to display images as Unicode in your terminal. The library is currently optimized for Ubuntu Mono font rendered by libvte (Gnome Terminal, Terminator etc.) i.e. it works on stock Ubuntu.

pip install img2unicode
imgcat image.jpg

Installation

You can install img2unicode via pip from PyPI:

$ pip install img2unicode

If you want to utilize FastGammaOptimizer, install the optional n2 dependency:

$ pip install 'img2unicode[n2]'

Note that ExactGammaOptimizer is more portable, yet much slower. Use BestGammaOptimizer alias to choose automatically between these two.

Usage

import img2unicode
# Use Unicode Block Elements
optimizer = img2unicode.FastGenericDualOptimizer("block")
renderer = img2unicode.Renderer(default_optimizer=optimizer, max_h=60, max_w=160)
renderer.render_terminal('examples/obama.jpg', 'obama-block.txt')

# Pair Renderer to Optimizer
optimizer = img2unicode.FastGammaOptimizer("no_block") # Or ExactGammaOptimizer
renderer = img2unicode.GammaRenderer(default_optimizer=optimizer, max_h=60, max_w=160)
renderer.render_terminal('examples/obama.jpg', 'obama-noblock.txt')

pil_image = renderer.prerender('examples/obama.jpg')
pil_image.save('obama-rendered.png')

# Use own mask: it may be name from common masks (see source), slice or numpy bool array.
ascii_optimizer = img2unicode.FastGammaOptimizer(slice(32, 127), use_color=False)
# Get the characters, foreground and background colors. Use non-default optimizer.
chars, fores, backs = renderer.render_numpy('examples/obama.jpg', optimizer=ascii_optimizer)

Optimizers

Here is a quick comparison of the most usable optimizers:

FastQuadDualOptimizer() FastGenericDualOptimizer ("block") FastGammaOptimizer (charmask="no_block") FastGammaOptimizer (charmask="no_block", use_color=False)
Choses from 4-pixel characters like ▚ Optimizes foreground/background for whole Unicode Block Elements. Optimizes foreground color for all Unicode rendered in single cell. Same, but does't use terminal colors.
Good color representation Good color and crisper image Crisp edges with black Pure art, no color.
Foreground & background Foreground & background Just foreground No color
~5Hz ~4Hz ~1Hz ~2Hz
O(S*T), T=7 O(S*T), T=24 O(S*log(T)), T=5553 O(S*log(T)), T=5553

Where S is the number of 16x8 pixel samples to optimize for and T is the number of templates.

See it yourself

Use the included termview script to browse images with all renderers. First, install the optional dependency:

$ pip install 'img2unicode[termview]'

then execute:

termview examples/obama.jpg

termview demo

or use imgcat to display an image in your terminal:

imgcat examples/obama.jpg

More samples

To see how other optimizers compare to each other, see examples/README.md.

To see more eyecandy of photos, videos and plots, see the matrach/img2unicode-demos repo

How FastGammaOptimizer works

img2unicode employs optimization with (Approximate) Nearest Neighbors. For each chunk of an image (i.e. 16x32 px), the tool basically selects a glyph (from a prerendered dataset) that optimizes both:

  • perceptual similarity (implemented as a pixel-by-pixel Euclidean distance between the blurred glyph template and the chunk),
  • visually matching edges (as you can see in the Obama example).

The need to use ML arose from the need to support arbitrary Unicode glyphs. This is not easily portable while maintaining the rendering quality, because there is a lot of variability between rendering by different terminal backends (e.g., libvte, kitty, etc.) and fonts.

Details of FastGenericDualOptimizer

The algorithm select characters when we control both background and foreground of each piece.

In a general case, when using characters with a grayscale channel and a well-behaved color space such as LAB or HCL, the algorithm should minimize the total deviation of each pixel from the selected template.

Let cs be a matrix of char template luma values -- an (N, H*W) float matrix called a mask, where N is the number of templates and H, W are the image chunk dimensions. By $\lVert c \rVert^2$ I will indicate the error in pixel color rendering (squared euclidean distance -- $L_2$ loss function), and $\cdot$ will designate a mask-color combination. Then, if s is an image chunk for rendering -- (H*W, 3) shaped matrix, my tool would optimize the following: $$argmin_{i \in 0,\ldots,N} \sum_{p=0}^{WH} \lVert cs_{i,p} \cdot fg_i + (1-cs_{i,p}) \cdot bg_i - s_p \rVert^2$$

where $fg$ and $bg$ are the calculated average foreground and background colors, respectively, as follows

$$fg_i = \frac{\sum_{p=0}^{WH} (cs_{i,p} \cdot s_p)}{\sum_{p=0}^{WH} cs_{i,p}}$$ $$bg_i = \frac{\sum_{p=0}^{WH} (1-cs_{i,p}) \cdot s_p)}{\sum_{p=0}^{WH} 1-cs_{i,p}}$$ with the assumption, that $0/0$ is $0$. (For some reason, the $\Sigma$ is weirdly rendered by GitHub's MathJax).

In the special case that $cs_{i,p}$ is binary (either 0 or 1 - as in the case of Unicode block characters), the first formula may be written equivalently as $$argmin_{i \in 0,\ldots,N}~ \sum_{p=0}^{WH} \lVert cs_{i,p} \cdot fg_i - s_p \rVert^2 + \sum_{p=0}^{WH} \lVert (1-cs_{i,p}) \cdot bg_i - s_p \rVert^2$$

But in this version, we may convert the initial optimization problem into just:

argmax_i~ \lVert
\frac{
  \sum_p cs_{i,p}
}{
  \sqrt{\sum_p cs_{i,p}}
} \cdot s_p \rVert^2
+ \lVert
\frac{\sum_p (1-cs_{i,p})}{\sqrt{\sum_p 1-cs_{i,p}}}  \cdot s_p
\rVert^2

This formula allows us to precompute the

C_{i,p} \equiv \frac{
  \sum_p cs_{i,p}
}{
  \sqrt{\sum_p cs_{i,p}}
} 

part as a matrix, (same $C'$ for $1-cs$). And now we can rewrite the above formula as (using dot-products): $$argmax_i \lVert C_i \cdot s \rVert ^2 + \lVert C'_i \cdot s \rVert ^2$$ This can be further simplified to matrix multiplication if we have multiple samples to optimize at the same time (the $S$ tensor has shapes (chunks, W*H, 3)). Then, the optimal characters are selected by calculating just:

best\_char(j, S) = (argmax_i  \lVert (C_i \cdot S \rVert^2+ \lVert C'_i \cdot S \rVert^2)_{j}

With a bit of juggling, this may be implemented as:

  1. $Q$ = query matrix of image chunks (chunks, W*H, 3)
  2. $C$ = foreground template tensor with shape extended to (N, W*H, 3). $C'$ - same for background.
  3. foreground_match = C.mat_mult(Q)**2 - shaped (chunks, N, W*H)
  4. background_match = C'.mat_mul(Q)**2 - shaped (chunks, N, W*H)
  5. scores = (foreground_match + background_match).sum(axis=2) shaped (chunks, N)
  6. best_char = scores.argmax(axis=1) -- highest scoring template -- a vector (list) of chunks integers of 0...N.

All that remains is to average the pixels over the mask to compute the appropriate color for the background and foreground.

TODO

  • write more docs, document code
  • describe how dual optimizer works in readme
  • describe how gamma optimizer works in readme
  • solve foreground & background optimization sublinear in templates
  • add support for Unicode 13 Legacy Computing block
  • add support for edges optimization in FastDualGenericOptimizer

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

img2unicode-0.1a11.tar.gz (19.8 MB view details)

Uploaded Source

Built Distribution

img2unicode-0.1a11-py3-none-any.whl (19.8 MB view details)

Uploaded Python 3

File details

Details for the file img2unicode-0.1a11.tar.gz.

File metadata

  • Download URL: img2unicode-0.1a11.tar.gz
  • Upload date:
  • Size: 19.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for img2unicode-0.1a11.tar.gz
Algorithm Hash digest
SHA256 2c8d5d9a20501c6e61568fe85e75f4cebacb39a43fdfc16b8e317dbce1a74892
MD5 1c8696a2708a01d3ef564784352f8092
BLAKE2b-256 e8e92adc1ea3051d8f1290d77c58dc6664a889a527c1011221843681fb3124d5

See more details on using hashes here.

File details

Details for the file img2unicode-0.1a11-py3-none-any.whl.

File metadata

  • Download URL: img2unicode-0.1a11-py3-none-any.whl
  • Upload date:
  • Size: 19.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for img2unicode-0.1a11-py3-none-any.whl
Algorithm Hash digest
SHA256 92eed3a9b761ff4b6d6d83d3c5870a59cf53607f20b8d488f2f61fd584fef9ac
MD5 c170d52771a9c00cea0624b813498372
BLAKE2b-256 771e792f6a71459445ccf93f54be330e2da50511e70a79760a330f67cc344c31

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page