Skip to main content

Basic image analysis tools (cropping, contour properties, etc.)

Project description

About

Basic image analysis tools, with the following functions:

  • imcrop(): image cropping, with interactive options,
  • contour_properties(): calculate centroid, area, and perimeter of a contour,
  • closest_contour(): closest contour to a position,
  • contour_coords(): transform contour from scikit-image or opencv into usable x, y data,

The imgbasics.transform module also contains functions mimicking those found in Scikit Image's transform module, but that are based on OpenCV for improved speed. For now it only contains:

  • transform.rotate(): rotate image

Note: the package also defines a ContourError class as a custom exception for errors in contour calculations.

Install

pip install imgbasics

Quick start

Below is some information to use available functions. Please also consult docstrings and the Jupyter notebooks ExamplesBasics.ipynb for more details and examples.

Image cropping (imcrop)

Image cropping function; the interactive mode allows the user to define the region of interest on the image interactively, either using clicks or a draggable rectangle.

The image img is assumed to be already loaded in memory as a numpy array (or equivalent, i.e. that supports slicing and defines shape and ndim attributes)

Non-interactive mode

img_crop = imgbasics.imcrop(img, cropzone)

Crops the image img according to a pre-defined crop rectangle cropzone = xmin, ymin, width, height. Contrary to the Matlab imcrop function with the same name, the cropped image is really of the width and height requested in terms of number of pixels, not w+1 and h+1 as in Matlab.

Interactive mode

img_crop, cropzone = imgbasics.imcrop(img)

Cropping rectangle is drawn on the image (img) by either:

  • defining two corners of the rectangle by clicking (default).
  • using a draggable rectangle for selection and pressing "enter" (draggable=True option)

The returned cropzone corresponds to xmin, ymin, width, height.

Note: when selecting, the pixels taken into account are those which have their centers closest to the click, not their edges closest to the click. For example, to crop to a single pixel, one needs to click two times within this pixel (possibly at the same location). For images with few pixels, this results in a visible offset between the dotted lines plotted after the clicks (running through the centers of the pixels clicked) and the final rectangle, which runs along the edges of all pixels selected.

Other arguments

Other arguments are available, e.g. for appearance, visibility, axes, etc. of the cropping tools. See docstrings for details.

Contour properties (contour_properties)

Returns centroid position, perimeter and area of a contour as a dictionary with keys 'centroid' (tuple with x and y position), 'perimeter' (positive float), 'area' (signed float). The sign convention for the area A differs depending on what type of plot is used (because plt.imshow() and plt.plot() do not use the same coordinate conventions):

direction imshow image (plt.imshow()) regular plot (plt.plot())
clockwise A < 0 A > 0
anti-clockwise A > 0 A < 0

(see ExamplesBasics.ipynb for a discussion of the direction of the contours returned by both scikit-image and opencv in different situations).

Example (Hexagon which rotates anti-clockwise in regular coordinates and clockwise on an imshow plot):

import numpy as np
from imgbasics import contour_properties

l = 1 / np.sqrt(3)
xp = np.array([1, 1, 0, -1, -1, 0])/2
yp = np.array([-l, l, 2*l, l, -l, -2*l])/2

data = contour_properties(xp, yp)

should return

data['centroid'] ~ (0, 0)
data['perimeter'] = 6 / sqrt(3) ~ 3.4641,
data['area'] = -sqrt(3)/2 ~ -0.8660

Closest contour (closest_contour)

Finds the closest contour (within a list of contours obtained by scikit-image or opencv) to a certain position (tuple (x, y)). Example with the example.png image provided in the package (should select the lowest, bright spot)

from skimage import io, measure
from imgbasics import closest_contour

img = io.imread('example.png')
contours = measure.find_contours(img, 170)

c = closest_contour(contours, (221, 281), edge=True, source='scikit')
  • If edge = True, returns the contour with the edge closest to the position
  • If edge = False (default), returns the contour with the average position closest to position.
  • source is the origin of the contours ('scikit' or 'opencv')

Note: raises a ContourError if no contours in image (contours empty).

Contour coordinates (contour_coords)

Following the analysis in the section above (contour c), the contour_coords() function allow to format the contour into directly usable x, y coordinates for plotting directly on the imshow() image. For example, following the code above:

import matplotlib.pyplot as plt
from imgbasics import contour_coords

x, y = contour_coords(c, source='scikit')

fig, ax = plt.subplots()
ax.imshow(img, cmap='gray')
ax.plot(x, y, -r)

Image transformation module (imgbasics.transform)

This module mimicks Scikit Image's transform module but with calculations based on OpenCV for order-of-magnitude improvement (typically more than 10-fold) in speed. Right now it only contains the rotate() function.

from imgbasics.transform import rotate
from skimage import io

img = io.imread('example.png')
img_rot = rotate(img, angle=-23, resize=True, order=3)  # bicubic interpolation

Interactive cropping demo

With clicks (default):

With a draggable rectangle:

Dependencies

  • python >= 3.6
  • matplotlib
  • numpy
  • importlib-metadata
  • drapo >= 1.2.0
  • [optional] openCV (cv2), only if using the imgbasics.transform module (not listed in the install dependencies of the imgbasics package)

Author

Olivier Vincent

(ovinc.py@gmail.com)

License

BSD 3-clause (see LICENSE file)

BSD 3-Clause License

Copyright (c) 2020, Olivier VINCENT All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

  • Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

  • Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

  • Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imgbasics-0.3.0.tar.gz (1.2 MB view details)

Uploaded Source

Built Distribution

imgbasics-0.3.0-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file imgbasics-0.3.0.tar.gz.

File metadata

  • Download URL: imgbasics-0.3.0.tar.gz
  • Upload date:
  • Size: 1.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for imgbasics-0.3.0.tar.gz
Algorithm Hash digest
SHA256 913a36f6f81ccd51010b91ab9eeb96b9a3ef1d540596c033893825a7574834cd
MD5 ad52a4bbb42e3e91dfa369a75bf52b70
BLAKE2b-256 750ffc8d3b6b25559d891be96eef9620e935a6b482f879cf9fce4f4b4abcaeb4

See more details on using hashes here.

File details

Details for the file imgbasics-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: imgbasics-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 13.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.1.post20201107 requests-toolbelt/0.9.1 tqdm/4.50.2 CPython/3.8.5

File hashes

Hashes for imgbasics-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 6c4ed69aeacbc5705d85b000a17f1042b143da13d94cb7c80d1881224de6f10d
MD5 e943715dfe4ed84286870e270490b701
BLAKE2b-256 0274aa115e5011f0c0644b96e25b9df342d3548909a25353c44f97f7ab3bcfd2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page