Skip to main content

Graph Neural Network Library Built On Top Of PyTorch and PyTorch Geometric

Project description

IMGRAPH

Used for converting image to graph, uses superpixel method for node creation, extract features from CNN models.

Example Usage:

    from imgraph.pipeline import create_graph_pipleline

    path = "path/to/image"

    create_graph_pipleline(path, 'classification', 'rag', 'resnet18', 10)

Above code will create a graph from the image and save it in the directory .~/cache/imgraph or directory specified by the user in enviornment variable IMGRAPH_HOME.

Expected input folder structure:

    image_folder
    ├── test
    │   ├── class1
    │   └── class2
    ├── train
    │   ├── class1
    │   └── class2
    └── val
        ├── class1
        └── class2

The graph will be saved in the PyG Data format or pickle format.

To install pytorch geometric dependencies, please follow the instructions here: PyG installation or use the following code snippet:

To install full dependeciens install using setup.py with full-dependencies flag (its slow, but will install all dependencies)

    import torch

    def format_pytorch_version(version):
    return version.split('+')[0]

    TORCH_version = torch.__version__
    TORCH = format_pytorch_version(TORCH_version)

    def format_cuda_version(version):
    return 'cu' + version.replace('.', '')

    CUDA_version = torch.version.cuda
    CUDA = format_cuda_version(CUDA_version)

    !pip install torch-scatter     -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
    !pip install torch-sparse      -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
    !pip install torch-cluster     -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
    !pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-{TORCH}+{CUDA}.html
    !pip install torch-geometric 

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imgraph-0.0.9.tar.gz (92.1 kB view details)

Uploaded Source

Built Distribution

imgraph-0.0.9-py3-none-any.whl (37.2 kB view details)

Uploaded Python 3

File details

Details for the file imgraph-0.0.9.tar.gz.

File metadata

  • Download URL: imgraph-0.0.9.tar.gz
  • Upload date:
  • Size: 92.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for imgraph-0.0.9.tar.gz
Algorithm Hash digest
SHA256 e4d394ba4c2bdceab0e076c404f0d686332324cd2a7da7b3ee2daece305c7840
MD5 473852b0701616cf6fa4da706c057166
BLAKE2b-256 93e1ca1cb143a216e943b7b1dd1ee7795dc2c324337b41353b854aa8442e22ee

See more details on using hashes here.

File details

Details for the file imgraph-0.0.9-py3-none-any.whl.

File metadata

  • Download URL: imgraph-0.0.9-py3-none-any.whl
  • Upload date:
  • Size: 37.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.16

File hashes

Hashes for imgraph-0.0.9-py3-none-any.whl
Algorithm Hash digest
SHA256 864e734a50e489b63c3ad7f86070ad2209af9b4ff652d24dfa9f6c664bc331df
MD5 5e5014ecfde5a10dee412fc9dc726d75
BLAKE2b-256 a0dbe4a2fbd44f3c2a640e3a0eb2ee5539e6fcfed55a2eaef767d9a7e97aef28

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page