Skip to main content

Simple image tools package. Used to convert, downscale or upscale images.

Project description

Python package PyPI package codecov Codacy Badge Downloads Known Vulnerabilities

Description

imgtools_m8 is a simple image tools package that provides functionality to convert, downscale, and upscale images.

It uses deep learning and OpenCV to upscale images using pre-trained models developed by Xavier Weber (more info here).

Installation

You can install the package from GitHub or PyPI.

To install directly from GitHub:

$ python3 -m pip install "git+https://github.com/mano8/imgtools_m8 --upgrade"

To install from PypI :

python3 -m pip install imgtools_m8 --upgrade

Usage

The imgtools_m8 package offers automated image processing capabilities for a designated source directory, with the output results saved to a specified output directory.

The package provides versatile resizing options, including:

  • fixed_width: Resizing images to an exact width in pixels.
  • fixed_height: Resizing images to an exact height in pixels.
  • fixed_size: Resizing images based on the first limitation reached (height or width).
  • fixed_width and fixed_height: Resizing images based on the highest limitation reached, while allowing different height and width values.

In cases where the original image size exceeds the specified output dimensions, the package automatically applies upscaling using pre-trained models.

For more usage examples, refer to the example's directory.

(See accepted extensions from cv2 documentation)

In all the examples provided, the source_path value is set to a single image file path. However, this package can also work with a directory path containing multiple image files. In this scenario, the processing will be applied to all images within the specified source_path directory.

Example 1

In this example, we demonstrate how to convert an input image to three different formats (.jpg, .webp, and .png) without resizing.

from imgtools_m8.img_tools import ImageTools

# Set up the output formats
output_formats = [
    {
        'formats': [
            {'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1},
            {'ext': '.webp', 'quality': 70},
            {'ext': '.png', 'compression': 2}
        ]
        
    }
]

# Create an instance of ImageTools
imgtools = ImageTools(
    source_path="./tests/dummy_dir/recien_llegado.jpg",
    output_path="/my/output/path/directory",
    output_formats=output_formats
)
# Run the image processing
imgtools.run()

This code snippet converts the input image to three different formats (JPEG, WEBP, and PNG) and saves the resulting images in the specified output directory.

The JPEG images are saved with 80% quality, progressive encoding, and optimization.
The WEBP images are saved with 70% quality,
and the PNG images are saved with compression level 2.

Example 2

In this example, we demonstrate how to resize an input image and save it as a .jpeg format.

The source file is 340px wide and 216px high. The output file will be downscaled to 300*190 px, and finally saved as a JPEG with 80% quality, progressive encoding, and optimization.

when fixed_width and fixed_height are set, the downscale process selects the higher coefficient as the limitation, and in this case, it is the fixed width of 300 px.

For a fixed height of 200 px, the output will be an image of 314x200 px.

from imgtools_m8.img_tools import ImageTools

# Set up the output formats
output_formats = [
    {
        'fixed_width': 300,
        'fixed_height': 200,
        'formats': [
            {'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1}
        ]
    }
]

# Create an instance of ImageTools
imgtools = ImageTools(
    source_path="./tests/dummy_dir/recien_llegado.jpg",
    output_path="/my/output/path/directory",
    output_formats=output_formats
)
# Run the image processing
imgtools.run()

In this example, the input image is downscaled to a fixed width of 300 pixels, as the higher coefficient is selected. The resulting image is then saved as a JPEG with 80% quality, progressive encoding, and optimization.

Example 3

In this example, we demonstrate how to resize an input image and save it as a .jpeg format.

The source file is 340px wide and 216px high. The output file will be upscaled 4x to 1360x864 px, then downscaled to 1200x762 px, and finally saved as a JPEG with 80% quality, progressive encoding, and optimization.

By default, the package uses the pre-trained EDSR model to upscale images, automatically determining the best model scale to use. In this case, the best choice is the EDSR_4x.pb model.

from imgtools_m8.img_tools import ImageTools

# Set up the output formats
output_formats = [
    {
        'fixed_width': 1200,
        'formats': [
            {'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1}
        ]
    }
]

# Create an instance of ImageTools
imgtools = ImageTools(
    source_path="./tests/dummy_dir/recien_llegado.jpg",
    output_path="/my/output/path/directory",
    output_formats=output_formats
)
# Run the image processing
imgtools.run()

This code snippet demonstrates how to resize an input image using automatic upscaling and downscaling.

The image is first upscaled using the default EDSR model to achieve a higher resolution, then downscaled to the specified width of 1200 pixels.

The resulting image is saved as a JPEG with 80% quality, progressive encoding, and optimization.

The package automatically selects the appropriate model scale for upscaling based on the image dimensions.

Example 4

In this example, we demonstrate how to fix the model scale for the upscale process and resize an input image while saving it as a .jpeg format.

For various reasons, users might want to use only a preferred model scale for the upscale process. In this case, it's necessary to define a model configuration with the selected model scale value, which needs to be a valid model scale.

For example, the pre-trained EDSR model has valid model scales of 2x, 3x, and 4x. Other models may have different valid scale values.

The source file is 340px wide and 216px high. The output file will be upscaled 2x two times in this case, resulting in a size of 1360x864 px. Then it will be downscaled to 1200x762 px, and finally saved as a JPEG with 80% quality, progressive encoding, and optimization.

This process is slower compared to Example 3 due to the necessity of executing two upscale processes, which increases the execution time.

from imgtools_m8.img_tools import ImageTools

# Set up model configuration
model_conf = {
   'scale': 2
}

# Set up the output formats
output_formats = [
    {
        'fixed_width': 1200,
        'formats': [
            {'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1}
        ]
    }
]

# Create an instance of ImageTools
imgtools = ImageTools(
    source_path="./tests/dummy_dir/recien_llegado.jpg",
    output_path="/my/output/path/directory",
    output_formats=output_formats,
    model_conf=model_conf
)
# Run the image processing
imgtools.run()

Example 5

In this example, we demonstrate how to use another pre-trained model. While this package currently only contains the EDSR model, you have the flexibility to use any available model of your choice.

To use a different model, you will need to download models with a .pb extension from here. Once downloaded, place the models in a directory, and set the model configuration as shown below.

If you wish to automatically select the best model scale, ensure you have downloaded all available model scales or only the ones you intend to use. Keep in mind that when only one model scale is available for a model, it will be used exclusively. This can result in slower execution times and/or lower quality results depending on the available model scale, input image size, and output size(s) defined in the configuration.

In this example, we use the pre-trained TF-ESPCN model to upscale images, automatically determining the best model scale to use. In this case, the best choice is the TF-ESPCN_4x.pb model.

from imgtools_m8.img_tools import ImageTools

# Set up model configuration for downloaded TF-ESPCN models
model_conf = {
   'path': "/path/to/your/downloaded/model/directory",
   'model_name': 'espcn',
}

# Set up the output formats
output_formats = [
    {
        'fixed_width': 1200,
        'formats': [
            {'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1}
        ]
    }
]

# Create an instance of ImageTools
imgtools = ImageTools(
    source_path="./tests/dummy_dir/recien_llegado.jpg",
    output_path="/my/output/path/directory",
    output_formats=output_formats,
    model_conf=model_conf
)
# Run the image processing
imgtools.run()

Input/Output Example :

Input Image

The source file is 340px width and 216px height.

Recien Llegado @Cezar llañez

Recien llegado by @Cezar yañez

Upscaled Output

In some examples, the output is upscaled to 1200x762 px and saved as a JPEG with 80% quality, progressive encoding, and optimization:

Recien Llegado @Cezar llañez

recien_llegado_1200x762.jpg by @Cezar yañez

#License This project is licensed under the Apache 2 License - see the LICENSE file for details.

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imgtools_m8-1.1.0.tar.gz (94.8 MB view details)

Uploaded Source

Built Distribution

imgtools_m8-1.1.0-py3-none-any.whl (94.8 MB view details)

Uploaded Python 3

File details

Details for the file imgtools_m8-1.1.0.tar.gz.

File metadata

  • Download URL: imgtools_m8-1.1.0.tar.gz
  • Upload date:
  • Size: 94.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imgtools_m8-1.1.0.tar.gz
Algorithm Hash digest
SHA256 5637ed5bb3deb22d75a1d6dbd8a7a6f6826bb2c3ad62254a6acfb86b4fd0cbe6
MD5 1543d3ca72e86ffca8b167b8f1bb7d1d
BLAKE2b-256 77ec592f2de14ea5f2834c6af9c34b0e4b90ccf8fd17637471404388bab749c9

See more details on using hashes here.

File details

Details for the file imgtools_m8-1.1.0-py3-none-any.whl.

File metadata

  • Download URL: imgtools_m8-1.1.0-py3-none-any.whl
  • Upload date:
  • Size: 94.8 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for imgtools_m8-1.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7de14df4ff0a1dec3a4d98ec0e910f94557bdb9674e1c84430ba5a38c2626f82
MD5 2d03381a7d799a42bd5da539ca292b72
BLAKE2b-256 1fc82c5c1244d1a6415d4a6c853ce699cde4f276a35c1b2afa2779c7664a95c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page