Skip to main content

Simple image tools package. Used to convert, downscale or upscale images.

Project description

Python package

imgtools_m8

Simple image tools package. Used to convert, downscale and/or upscale images.

Use deep learning and cv2 to upscale image using Xavier Weber models, (more info here).

Installation

Install from GitHub repository :

To install directly from GitHub:

$ python3 -m pip install "git+https://github.com/mano8/imgtools_m8"

How to use

This package automatically covert, downscale and/or upscale an image file or a list of images from directory defined in source_path property.
(See accepted extensions from cv2 documentation)

Example :

    >>> # Set source as an image file 
    >>> source_path = /path/to/image.png
    >>> # Or set source as a directory containing your images
    >>> source_path = /path/to/directory

Next you will need to define output configuration:

  • path: The output path
  • output_formats: The list of output formats,
    who contains optional output sizes and output image format
    (extension and compression options)

It is possible to resize images with different options:

  • fixed_width: resize image to exact width (in pixel)
  • fixed_height: resize image to exact height (in pixel)
  • fixed_size: resize image depending on first limitation reached (height or width)
  • fixed_width and fixed_height: resize image depending on first limitation reached.
    same as fixed_size but can set different height/width values.

Example : The source file is 450px width and 280px height. You want resized output file to exact width of 1600px and 800px. And you need output formats as JPEG (with 80% quality) and WEBP (with 70% quality)

    >>> source_path = /path/to/image.png
    >>> output_conf = {
            # Output path
            'path': /my/output/path/directory, 
            'output_formats': [
                {  # Get resized output file to exact width of 1600px
                    'fixed_width': 1600,
                    'formats': [
                        # JPEg defauts are 'quality': 95, 'progressive': 0, 'optimize': 0
                        {'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1},
                        {'ext': '.webp', 'quality': 70},
                        {'ext': '.png', 'compression': 2}
                    ]
                },
                {  # Get resized output file to exact width of 800px
                    'fixed_width': 800,
                    'formats': [
                        {'ext': '.jpg', 'quality': 80},
                        {'ext': '.webp', 'quality': 70}
                    ]
                }
            ]

        }
        >>> imgtools = ImageTools(
            source_path=source_path,
            output_conf=output_conf
        )
        >>> imgtools.run()

This will create 4 files in the output directory :

  • Two JPEG files resized as defined width (1600px and 800px), with 80% quality, JPEG progressive and optimize features enabled
  • Two WEBP files resized as defined width (1600px and 800px), with 70% quality
  • One PNG file resized as defined width (1600px), with PNG compression level = 2

The output file names are set as:

    >>> 'originalName'_'imageWidth'x'imageHeight'.'outputExtension'
    >>> # egg :
    >>> originalFileName_1400x1360.jpeg

In this case source file is precessed as:

  • upscale 2x (source file is now 900px/560px)
  • for 800px width output downscale and save as .jpeg an .webp
  • upscale 2x (source file is now 1800px/1120px)
  • for 1600px width output downscale and save as .jpeg an .webp

By default, the image tool use EDSR_x2.pb deep learning model, to improve quality.

To load any compatible model of your choice to upscale the images, you can define model_conf property.

The imgtools_m8 only contain EDSR (x2, x3, x4) and FSRCNN(x2, x3, x4) models.

If you want uses one of them set model_conf property as:

    >>> # Set EDSR_x4 model to upscale images
    >>> model_conf = {
        'file_name': 'EDSR_x4.pb',
    }
    >>> # Or set FSRCNN_x2 model to upscale images
    >>> model_conf = {
        'file_name': 'FSRCNN_x2.pb',
    }

In case you want uses another compatible model, you may download the desired .pb file, and set model_conf property as:

    >>> # Set TF-ESPCN_x2 model to upscale images
    >>> model_conf = {
        'path': "/path/to/your/downloaded/model/directory",
        'file_name': 'TF-ESPCN_x2.pb',
    }

Here a complete example using TF-ESPCN_x2 model to upscale images :

    >>> # Set TF-ESPCN_x2 model to upscale images
    >>> model_conf = {
        'path': "/path/to/your/downloaded/model/directory",
        'file_name': 'TF-ESPCN_x2.pb',
    }
    >>> source_path = /path/to/image.png
    >>> output_conf = {
            # Output path
            'path': /my/output/path/directory, 
            'output_formats': [
                {  # Get resized output file to exact width of 1600px
                    'fixed_width': 1600,
                    'formats': [
                        {'ext': '.jpg', 'quality': 80},
                        {'ext': '.webp', 'quality': 70}
                    ]
                },
                {  # Get resized output file to exact width of 800px
                    'fixed_width': 800,
                    'formats': [
                        {'ext': '.jpg', 'quality': 80},
                        {'ext': '.webp', 'quality': 70}
                    ]
                }
            ]

        }
        >>> imgtools = ImageTools(
            source_path=source_path,
            output_conf=output_conf,
            model_conf=model_conf
        )
        >>> imgtools.run()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imgtools_m8-0.0.2.tar.gz (94.9 MB view details)

Uploaded Source

Built Distribution

imgtools_m8-0.0.2-py3-none-any.whl (94.9 MB view details)

Uploaded Python 3

File details

Details for the file imgtools_m8-0.0.2.tar.gz.

File metadata

  • Download URL: imgtools_m8-0.0.2.tar.gz
  • Upload date:
  • Size: 94.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imgtools_m8-0.0.2.tar.gz
Algorithm Hash digest
SHA256 a6425352f8b1e8e87947cb1a71b06d7995dd5d67ab6ddd73354580f84d6958cb
MD5 dd1e684a2650bae31e7bf213e78bc63a
BLAKE2b-256 f99263cc29612e4b3c259e5d13daab987514015b6090874c57c034693db395eb

See more details on using hashes here.

File details

Details for the file imgtools_m8-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: imgtools_m8-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 94.9 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imgtools_m8-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 2de71d64c2afd9c2e76030ea55d1e189e1950732a014c575a598fe1c75e2ca4c
MD5 9d5020b14ab229e101f8bc1b9c334bba
BLAKE2b-256 adea91388039bcb1edf62ae282a14d05d24e8e0b9cb02e98d88c0eee071b3d53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page