Simple image tools package. Used to convert, downscale or upscale images.
Project description
imgtools_m8
Simple image tools package. Used to convert, downscale and/or upscale images.
Use deep learning and cv2 to upscale image using Xavier Weber models, (more info here).
Installation
Install from GitHub repository :
To install directly from GitHub:
$ python3 -m pip install "git+https://github.com/mano8/imgtools_m8 --upgrade"
To install from PypI :
python3 -m pip install imgtools_m8 --upgrade
How to use
This package automatically covert, downscale and/or upscale
an image file or a list of images from directory defined in source_path property,
to output_path directory.
See examples for more use case.
(See accepted extensions from cv2 documentation)
It is possible to resize images with different options:
- fixed_width: resize image to exact width (in pixel)
- fixed_height: resize image to exact height (in pixel)
- fixed_size: resize image depending on first limitation reached (height or width)
- fixed_width and fixed_height: resize image depending on first limitation reached.
same as fixed_size but can set different height/width values.
Example :
The source file is 340px width and 216px height.
Recien llegado by @Cezar yañez
We want resized output file to exact width of 1900px and 1200px. And we need output formats as JPEG (with 80% quality) and WEBP (with 70% quality)
>>> output_formats = [
{ # Get resized output file to exact width of 1600px
'fixed_width': 1900,
'formats': [
# JPEg defauts are 'quality': 95, 'progressive': 0, 'optimize': 0
{'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1},
]
},
{ # Get resized output file to exact width of 800px
'fixed_width': 1200,
'formats': [
{'ext': '.jpg', 'quality': 80},
{'ext': '.webp', 'quality': 70}
{'ext': '.png', 'compression': 2}
]
}
]
>>> imgtools = ImageTools(
source_path="./tests/dummy_dir/recien_llegado.jpg",
output_path="/my/output/path/directory",
output_formats=output_formats
)
>>> imgtools.run()
This will create 4 files in the output directory :
- Two JPEG files resized as defined width (1900px and 1200px), with 80% quality, JPEG progressive and optimize features enabled
- Two WEBP files resized as defined width (1900px and 1200px), with 70% quality
- One PNG file resized as defined width (1900px), with PNG compression level = 2
The output file names are set as:
>>> 'originalName'_'imageWidth'x'imageHeight'.'outputExtension'
>>> # egg :
>>> originalFileName_1400x1360.jpeg
One of above results is :
recien_llegado_1200x762.jpg by @Cezar yañez
In this case source file is precessed as:
- upscale 2x (source file is now 680px/432px)
- upscale 2x (source file is now 1360px/864px)
- for 1200px width output downscale and save as recien_llegado_1200x762.jpg recien_llegado_1200x762.webp recien_llegado_1200x762.png
- upscale 2x (source file is now 2720px/1728px)
- for 1900px width output downscale and save as recien_llegado_1900x1207.jpeg an .webp
By default, the image tool use EDSR_x2.pb deep learning model, to improve quality.
To load any compatible model of your choice to upscale the images, you can define model_conf property.
The imgtools_m8 only contain EDSR (x2, x3, x4) models.
If you want uses one of them set model_conf property as:
>>> # Set EDSR_x4 model to upscale images
>>> model_conf = {
'model_name': 'edsr',
'scale': 4,
}
>>> # Or set FSRCNN_x2 model to upscale images
>>> model_conf = {
'model_name': 'edsr',
'scale': 2,
}
In case you want uses
another compatible model,
you may download the desired .pb
file,
and set model_conf property as:
>>> # Set TF-ESPCN_x2 model to upscale images
>>> model_conf = {
'path': "/path/to/your/downloaded/model/directory",
'model_name': 'espcn',
'scale': 2,
}
Here a complete example using TF-ESPCN_x2 model to upscale images :
>>> # Set TF-ESPCN_x2 model to upscale images
>>> model_conf = {
'path': "/path/to/your/downloaded/model/directory",
'model_name': 'espcn',
'scale': 2,
}
>>> output_formats = [
{ # Get resized output file to exact width of 1600px
'fixed_width': 1900,
'formats': [
# JPEg defauts are 'quality': 95, 'progressive': 0, 'optimize': 0
{'ext': '.jpg', 'quality': 80, 'progressive': 1, 'optimize': 1},
]
},
{ # Get resized output file to exact width of 800px
'fixed_width': 1200,
'formats': [
{'ext': '.jpg', 'quality': 80},
{'ext': '.webp', 'quality': 70}
{'ext': '.png', 'compression': 2}
]
}
]
>>> imgtools = ImageTools(
source_path="./tests/dummy_dir/recien_llegado.jpg",
output_path="/my/output/path/directory",
output_formats=output_formats,
model_conf=model_conf
)
>>> imgtools.run()
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file imgtools_m8-1.0.0.tar.gz
.
File metadata
- Download URL: imgtools_m8-1.0.0.tar.gz
- Upload date:
- Size: 94.8 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 77959d74d7759c5fc90d3e7725d027eea7674b011fbead2d26e2f036ab217c14 |
|
MD5 | ecbbf3796507a9f0bc442ab413f59c8a |
|
BLAKE2b-256 | f969feaa57d19a05d3b6e8f1864748ef4f3492389c16078dfdb762aeaa442f9d |
File details
Details for the file imgtools_m8-1.0.0-py3-none-any.whl
.
File metadata
- Download URL: imgtools_m8-1.0.0-py3-none-any.whl
- Upload date:
- Size: 94.8 MB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.17
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9897346b869253d98a6140a45bdb907f4b878974ddc6181ecc0b099ab48db6ef |
|
MD5 | 090d89aa4269772747d9218a3815b6c4 |
|
BLAKE2b-256 | ffadaee75aced07fc0166eabb950dca4ad3c780e151b34497481498f4aba1597 |