A pipeline for integrative analysis for scTCR- and scRNA-seq data
Project description
immunopipe
Integrative analysis for scTCR- and scRNA-seq data
Requirements & Installation
-
python
:3.7+
- Other python depedencies should be installed via
pip install -U immunopipe
- Other python depedencies should be installed via
-
R
- A bunch of R packages
-
Other
-
Checking requirements
pip install -U pipen-cli-require pipen require immunopipe.pipeline:pipeline <pipeline arguments>
-
Quick way to install the dependencies using conda
conda env create --file docker/environment.yml # then conda activate immunopipe
Running as a container
Using docker:
docker run -w /workdir -v .:/workdir -it justold/immunopipe:dev
Using singularity:
singularity run -w \ # need it to be writable
-H /home/immunopipe_user \ # required, used to init conda
--pwd /workdir -B .:/workdir \ # Could use other directory instead of "."
# --contain: don't map host filesystem
# --cleanenv: recommended, to avoid other host's environment variables to be used
# For example, $CONDA_PREFIX to affect host's conda environment
--contain --cleanenv \
docker://justold/immunopipe:dev
# The mount your data directory to /mnt, which will make startup faster
# For example
# -B .:/workdir,/path/to/data:/mnt
# Where /path/to/data is the data directory containing the data files
# You may also want to bind other directories (i.e. /tmp)
# -B <other bindings>,/tmp
# Or you can pull the image first by:
singularity pull --force --dir images/ docker://justold/immunopipe:dev
# Then you can replace "docker://justold/immunopipe:dev" with "images/immunopipe.sif"
Modules
- Basic TCR data analysis using
immunarch
- Clone Residency analysis if you have paired samples (i.e. Tumor vs Normal)
- V-J usage, the frequency of various V-J junctions in circos-style plots
- Clustering cells and configurale arguments to separate T and non-T cells
- Clustering T cell, markers for each cluster and enrichment analysis for the markers
- Radar plots to show the composition of cells for clusters
- (Meta-)Markers finder for selected groups/clones of cells
- Psedo-bulk GSEA analysis of two groups of cells
- Seurat cluster statistics, including:
- Basic statistics of the clusters (e.g. number of cells in each cluster)
- Gene expressions (e.g. ridge, violin, feature, dot and heatmap plots)
- Dimensional reduction plots
- TCR clustering using CDR3 sequences and the statistics of the clusters
- Cell group distribution (TCR clones/clusters) in Seurat clusters
- Clone heterogeneity (TCR clone distribution) in Seurat clusters
- Metabolic landscape analysis (Ref: Xiao, Zhengtao, Ziwei Dai, and Jason W. Locasale. "Metabolic landscape of the tumor microenvironment at single cell resolution." Nature communications 10.1 (2019): 1-12.)
Documentaion
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
immunopipe-0.2.1.tar.gz
(24.7 kB
view details)
Built Distribution
File details
Details for the file immunopipe-0.2.1.tar.gz
.
File metadata
- Download URL: immunopipe-0.2.1.tar.gz
- Upload date:
- Size: 24.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.14 CPython/3.10.6 Linux/5.15.0-1014-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 301f14f56e757a5bbfe9f5214d823d4fe07773a8bab55ac279227438ca6d69e5 |
|
MD5 | eaa8c3cfc09fe57d3b09a61e8fc5a144 |
|
BLAKE2b-256 | 7109a156f7001998fd6b02d3e85a34fd42bd306f4e4a231dee7237f2950391ca |
Provenance
File details
Details for the file immunopipe-0.2.1-py3-none-any.whl
.
File metadata
- Download URL: immunopipe-0.2.1-py3-none-any.whl
- Upload date:
- Size: 28.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.14 CPython/3.10.6 Linux/5.15.0-1014-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | b2683334569f5b4473c2e25685193848e25cb77f4477fa015180f44c2756bd12 |
|
MD5 | 6c550e0e4cc63f51b0bd0b20f0d2b3b3 |
|
BLAKE2b-256 | 1704d61977adfd5e71634944dc0467c0098dd90114965e13ecb6bbff02f0ade0 |