Skip to main content

Imporve object

Project description

imobject

imobject is a Python library that provides improvements for basic data types such as lists, dicts and dictionaries.

If you want to make data handling easier in Python, you can use imobject. It is a library that has three helpful classes: ObjDict, ImprovedList and OrmCollection.

Features

The imobject library provides the following features:

The ObjDict class allows you to create dictionary objects (Dictionary-like object or Dynamic Class as dict), which makes it easier to access and manipulate data elements. This class inherits from the built-in dict class and adds features such as converting dictionaries to objects, handling missing keys and access dictionary keys as attributes.

The ImprovedList class offers an improved alternative to the Python list class, which it provide additional methods for working with lists of ObjDict. This class extends the built-in list class and adds features such as inspecting the elements of a list and performing advanced mapping operations.

The OrmCollection class providing an interface and additional methods for querying and manipulating objects in the ImprovedList. This class is a list-like collection that extends ImprovedList and that implements an ORM overlay (wrapper) for a list of ObjDict.

Installation

You can install the imobject library using pip:

pip install imobject

ontribute

If you want to contribute to the imobject library, you can clone the project from GitHub and submit a pull request:

git clone https://github.com/username/imobject.git

Licence

The imobject library is distributed under the MIT license. See LICENSE for more information.

Exemples HERE

Here are some examples of using the imobject library.

ObjDict

>>> from imobject import ObjDict
>>> class Person:
        def __init__(self, name: str, age: int) -> None:
            self.name = name
            self.age = age
        def __repr__(self) -> str:
            return f"Person(name='{self.name}', age={self.age})"

>>> person = Person("zakaria", 33)
>>> obj = ObjDict({"a": 1, "test": {"zak": person}, "b": {"c": 2, "d": [3, 4]}})
>>> obj.a
1
>>> obj.select(['a'])
{'a': 1}
>>> res = obj.select(['a', 'b'])
>>> res
{'a': 1, 'b': {'c': 2, 'd': [3, 4]}}
>>> type(res)
<class 'imobject.obj_dict.ObjDict'>
>>> obj.select(1)
TypeError: Argument 'wanted_keys' should be a list, got 'int' instead.
>>> obj.select("d")
TypeError: Argument 'wanted_keys' should be a list, got 'str' instead.
>>> obj.select(["c"])
KeyError: "'ObjDict' object has no attribute 'c'"
>>> res.b
{'c': 2, 'd': [3, 4]}
>>> obj.select(['a', 'test'])
{'a': 1, 'test': {'zak': Person(name='zakaria', age=33)}}
>>> obj.select(['c'])
KeyError: "'ObjDict' object has no attribute 'c'"
>>> obj.a = 13
>>> obj.a
13
>>> obj['b']['c']
2
>>> obj.b.c
2
>>> obj.x = {"y": 5}
>>> obj.x
{"y": 5}
>>> obj.inspect
{   'a': 13,
    'b': {'c': 2, 'd': [3, 4]},
    'test': {'zak': Person(name='zakaria', age=33)},
    'x': {'y': 5}}
>>> del obj.a
>>> obj.a
AttributeError: 'ObjDict' object has no attribute 'a'
>>> obj_dict = obj.to_dict()
>>> obj_dict
{'test': {'zak': Person(name='zakaria', age=33)}, 'b': {'c': 2, 'd': [3, 4]}, 'x': {'y': 5}}
>>> type(obj_dict)
<class 'dict'>
>>> obj = ObjDict({
              "name": "Jane",
              "age": 35,
              "address": {"street": "456 Second St", "city": "Othertown", "state": "MA"},
              "scores": [85, 95],
          })
>>> obj
{'name': 'Jane', 'age': 35, 'address': {'street': '456 Second St', 'city': 'Othertown', 'state': 'MA'}, 'scores': [85, 95]}
>>> obj.update({
              "name": "Will",
              "age": 50,
              "address": {"street": "456 Second St", "city": "Othertown", "state": "LA"},
              "scores": [85, 100],
          })
>>> obj
{'name': 'Will', 'age': 50, 'address': {'street': '456 Second St', 'city': 'Othertown', 'state': 'LA'}, 'scores': [85, 100]}
>>> obj.items()
[('name', 'Will'), ('age', 50), ('address', {'street': '456 Second St', 'city': 'Othertown', 'state': 'LA'}), ('scores', [85, 100])]
>>> copied_dict = obj.copy()
>>> copied_dict
{'name': 'Will', 'age': 50, 'address': {'street': '456 Second St', 'city': 'Othertown', 'state': 'LA'}, 'scores': [85, 100]}

ImprovedList

>>> from imobject import ImprovedList
>>> simple_list = ImprovedList([1, 2, 3])
>>> simple_list.first()
1
>>> simple_list.first(2)
[1, 2]
>>> ImprovedList([]).first() # None
>>> ImprovedList([1, 2, 3]).last()
3
>>> ImprovedList([1, 2, 3]).last(2)
[2, 3]
>>> ImprovedList([]).last() # None
>>> ImprovedList([1, 2, 3]).map(":__str__")
['1', '2', '3']
>>> ImprovedList([1, 2, 3]).map(str)
['1', '2', '3']
>>> ImprovedList([1, 2, 3]).map(":to_bytes")
[b'\x01', b'\x02', b'\x03']
>>> ImprovedList([1, 2, 3]).map(float)
[1.0, 2.0, 3.0]
>>> ImprovedList([1, 2, 3]).map(lambda x: x * 2)
[2, 4, 6]
>>> ImprovedList([1, 2, 3]).map(lambda x: x ** 2)
[1, 4, 9]
>>> ImprovedList([]).map(float)
[]
>>> class Person:
        def __init__(self, name: str, age: int, salary: float, date: str):
            self.name = name
            self.age = age
            self.salary = salary
            self.date = datetime.strptime(date, "%Y-%m-%d")
        @property
        def ret_name(self) -> str:
            return self.name
        def get_name(self) -> str:
            return self.name
        def upper_name(self) -> str:
            return self.name.upper()
        def get_age(self) -> int:
            return self.age
        def change_name(self, new_name: str) -> None:
            self.name = new_name
        def change_age(self, new_age: int) -> None:
            self.age = new_age
        def is_adult(self) -> bool:
            return self.age >= 18
        def set_name(self, new_name: str) -> None:
            self.name = new_name
        def __repr__(self) -> str:
            return f"Person(name='{self.name}', age={self.age}, salary={self.salary}, date={self.date})"
>>> from datetime import datetime
>>> people = [
             Person("Alice", 25, 100, "2022-01-05"),
             Person("Bob", 12, 364, "2021-12-25"),
             Person("Charlie", 35, 740, "2022-01-20"),
         ]
>>> person_list = ImprovedList(people)
>>> person_list.map(':upper_name')
['ALICE', 'BOB', 'CHARLIE']
>>> person_list.map(":is_adult")
[True, False, True]
>>> person_list.map(":get_age")
[25, 12, 35]
>>> person_list.map(".name")
['Alice', 'Bob', 'Charlie']
>>> person_list.map(".age")
[25, 12, 35]
>>> person_list.map(lambda x: x.get_name(), filter_func=lambda x: isinstance(x, Person) and x.age >= 30)
['Charlie']
>>> person_list.map(":get_name", filter_func=lambda x: isinstance(x, Person))
['Alice', 'Bob', 'Charlie']
>>> person_list.map(".name", filter_func=lambda x: isinstance(x, Person))
['Alice', 'Bob', 'Charlie']
>>> person_list.map("name", filter_func=lambda x: isinstance(x, Person))
TypeError: called must be a string start with ':' for obj method or '.' obj attribute, or a callab
>>> def sort_by_date(obj: Person) -> datetime:
        return obj.date
>>> person_list.map(called=lambda obj: obj.name, sort_func=sort_by_date)
['Bob', 'Alice', 'Charlie']
>>> person_list.map(called=lambda obj: obj, sort_func=sort_by_date)
[Person(name='Bob', age=12, salary=364, date=2021-12-25 00:00:00), Person(name='Alice', age=25, salary=100, date=2022-01-05 00:00:00), Person(name='Charlie', age=35, salary=740, date=2022-01-20 00:00:00)]
>>> data_list = person_list + ImprovedList([1,2,3,"four",5.0,{"six": 6},[7],"Apple","Banana","Orange"])
>>> data_list
[Person(name='Alice', age=25, salary=100, date=2022-01-05 00:00:00), Person(name='Bob', age=12, salary=364, date=2021-12-25 00:00:00), Person(name='Charlie', age=35, salary=740, date=2022-01-20 00:00:00), 1, 2, 3, 10, 'four', 5.0, {'six': 6}, [7], 'Apple', 'Banana', 'Orange']
>>> data_list.map(called=lambda x: x**2, filter_func=lambda x: isinstance(x, int) and x % 2 == 0)
[4, 100]
>>> data_list.map(called=lambda x: x.upper(), filter_func=lambda x: isinstance(x, str) and len(x) > 5)
['BANANA', 'ORANGE']
>>> data_list.map(called=lambda x: x.capitalize(), filter_func=lambda x: isinstance(x, str) and "a" in x.lower())
['Apple', 'Banana', 'Orange']
>>> data_list.map(called=str, filter_func=lambda x: isinstance(x, int) and x >= 3)
['3', '10']
>>> person_list.map(":change_name", **{"new_name": "Thor"})
[None, None, None]
>>> person_list.inspect
ImprovedList(Person) data:
Person(name='Thor', age=25, salary=100)
Person(name='Thor', age=12, salary=364)
Person(name='Thor', age=35, salary=740)
>>> person_list.map(":change_name", **{"new_name": ""})
[None, None, None]
>>> person_list.inspect
ImprovedList(Person) data:
Person(name='', age=25, salary=100)
Person(name='', age=12, salary=364)
Person(name='', age=35, salary=740)

OrmCollection

# Importer la classe OrmCollection
import re
from imobject import (
    OrmCollection,
    ObjDict,
    Query,
    Filter,
    BaseMultipleFound,
    BaseNotFound,
)

# Create an instance of the OrmCollection class with data
orm_collection = OrmCollection(
    [
        ObjDict(
            {
                "name": "Alice",
                "age": 25,
                "gender": "female",
                "occupation": "psychologist",
            }
        ),
        ObjDict(
            {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"}
        ),
        {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
        {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
    ]
)

my_orm_collection_group = OrmCollection(
    [
        {"name": "Alice", "age": 25, "gender": "female", "occupation": "psy"},
        {"name": "Alice", "age": 80, "gender": "male", "occupation": "retraite"},
        {"name": "Bob", "age": 40, "gender": "male", "occupation": "cia"},
        {"name": "Charlie", "age": 30, "gender": "male", "occupation": "etud"},
        {"name": "Charlie", "age": 30, "gender": "male", "occupation": "prof"},
        {"name": "Dave", "age": 30, "gender": "male", "occupation": "ing"},
        {"name": "Dave", "age": 31, "gender": "male", "occupation": "prof"},
    ]
)

# Find all elements with name 'Alice'
results = orm_collection.where(name="Alice")
assert len(results) == 1
assert results[0] == {
    "name": "Alice",
    "age": 25,
    "gender": "female",
    "occupation": "psychologist",
}

# Find all elements where age is greater than 30 and occupation contains the word 'agent'
results = orm_collection.where(age__gt=30, occupation__contains="agent")
assert len(results) == 1
assert results[0] == {
    "name": "Bob",
    "age": 40,
    "gender": "male",
    "occupation": "CIA agent",
}

# Find all elements where age is not equal to 30
results = orm_collection.where(age__not=30)
assert len(results) == 2
assert results[0] == {
    "name": "Alice",
    "age": 25,
    "gender": "female",
    "occupation": "psychologist",
}
assert results[1] == {
    "name": "Bob",
    "age": 40,
    "gender": "male",
    "occupation": "CIA agent",
}

# Find all elements where name contains the letter 'a' and occupation starts with the letter 'p'
results = orm_collection.where(name__contains="c", occupation__startswith="p")
assert len(results) == 1
assert results[0] == {
    "name": "Alice",
    "age": 25,
    "gender": "female",
    "occupation": "psychologist",
}

# Trouver tous les éléments avec le nom commençant par "A" ou se terminant par "e"
results = orm_collection.where(name=re.compile(r"^A.*|.*e$"))
assert len(results) == 3
assert all(result["name"] in {"Alice", "Charlie", "Dave"} for result in results)

# Trouver tous les éléments avec le nom commençant par "A"
results = orm_collection.where(name=re.compile(r"^A.*"))
assert len(results) == 1
assert results[0]["name"] == "Alice"

# Trouver tous les éléments avec le nom se terminant par "e"
results = orm_collection.where(name=".*e$")
assert len(results) == 3
assert all(result["name"] in {"Alice", "Charlie", "Dave"} for result in results)

# Trouver tous les éléments avec un nom vide (devrait renvoyer tous les éléments)
results = orm_collection.where(name="")
print(results, len(results), len(orm_collection))
assert len(results) == len(orm_collection)
assert all(result in orm_collection for result in results)

# Trouver tous les éléments sans paramètres (devrait renvoyer 0 éléments)
results = orm_collection.where()
assert len(results) == 0

# Trouver tous les éléments avec l'âge égal à 100 (devrait renvoyer un ensemble vide)
results = orm_collection.where(age=100)
assert len(results) == 0

# Trouver tous les éléments avec le nom contenant la lettre "z"
results = orm_collection.where(name=re.compile(r".z.", re.IGNORECASE))
assert len(results) == 0

# Trouver tous les éléments avec le nom contenant la lettre "a" ou "e"
results = orm_collection.where(name=r"*a*|*e*")
# assert len(results) == 3
# assert all(result["name"] in {"Alice", "Charlie", "Dave"} for result in results)

# Trouver tous les éléments avec le nom se terminant par "ie"
results = orm_collection.where(name=re.compile(r".*ie$", re.IGNORECASE))
assert len(results) == 1
assert results[0]["name"] == "Charlie"

# Find all elements where age is greater than or equal to 30 and name contains 'v'
results = orm_collection.where(age__gte=30, name__contains="v")
assert len(results) == 1
assert results[0]["name"] == "Dave"

# Find all elements where age is not 25 and name contains 'v'
results = orm_collection.where(age__nin=[25], name__contains="v")
assert len(results) == 1
assert results[0]["name"] == "Dave"

# Find all elements where age is not 25 and name ends with 'e'
results = orm_collection.where(age__nin=[25], name__endswith="e")
assert len(results) == 2
assert {result["name"] for result in results} == {"Dave", "Charlie"}

# Find all elements with age equal to 25
results = orm_collection.where(age=25)
assert len(results) == 1
assert results[0]["name"] == "Alice"

# Find all elements with gender 'male' and age equal to 30
results = orm_collection.where(gender="male", age=30)
assert len(results) == 2
assert {result["name"] for result in results} == {"Charlie", "Dave"}

# Find all elements with name containing letter 'a'
results = orm_collection.where(name__contains="a")
assert len(results) == 2
assert {result["name"] for result in results} == {"Charlie", "Dave"}

# Find all elements where age is greater than 25 and name contains 'v'
results = orm_collection.where(age__gt=25, name__contains="v")
assert len(results) == 1
assert results[0]["name"] == "Dave"

# Find all elements where age is either 25 or 30 and name contains 'v'
results = orm_collection.where(age__in=[25, 30], name__contains="v")
assert len(results) == 1
assert results[0]["name"] == "Dave"

# Find all elements where age is less than 40 and name contains 'v'
results = orm_collection.where(age__lt=40, name__contains="v")
assert len(results) == 1
assert results[0]["name"] == "Dave"

# Find all elements where age is not 40 and name contains 'v'
results = orm_collection.where(age__not=40, name__contains="v")
assert len(results) == 1
assert results[0]["name"] == "Dave"

# Find all elements where age is equal to 40 and name contains 'b'
results = orm_collection.where(age__eq=40, name__contains="b")
assert len(results) == 1
assert results[0]["name"] == "Bob"

# Find all elements where age is less than or equal to 30 and name contains 'v'
results = orm_collection.where(age__lte=30, name__contains="v")
assert len(results) == 1
assert results[0]["name"] == "Dave"

# Test TypeError pour l'opérateur 'gt' avec une chaîne de caractères
try:
    orm_collection.where(**{"age__gt": "25"})
except TypeError as error:
    assert (
        error.args[0]
        == "Invalid type for value of '>' operator : expected int, found str"
    )

# Test TypeError pour l'opérateur 'in' avec un int
try:
    orm_collection.where(**{"age__in": 25})
except TypeError as error:
    assert (
        error.args[0]
        == "Invalid type for value of 'in' operator : expected list, found int"
    )

# Test TypeError pour l'opérateur 'contains' avec un int
try:
    orm_collection.where(**{"age__contains": 25})
except TypeError as error:
    assert str(error) == "'contains' lookup only works for string type fields"

# Test TypeError pour l'opérateur 'startswith' avec un int
try:
    orm_collection.where(**{"age__startswith": 25})
except TypeError as error:
    assert str(error) == "'startswith' lookup only works for string type fields"

# Test TypeError pour l'opérateur 'eq' avec une chaîne de caractères
try:
    orm_collection.where(**{"age__eq": "25"})
except TypeError as error:
    assert (
        str(error) == "'==' operator only works for same type fields, found int and str"
    )

# Test ValueError pour un opérateur invalide
try:
    orm_collection.where(Query([Filter("age", "test_not_op", 30)]))
except ValueError as error:
    assert str(error) == "'test_not_op' is not a valid operator"

# Recherche des éléments avec l'âge égal à 30
query = Query([Filter("age", None, 30)])
expected_names = {"Charlie", "Dave"}
results = orm_collection.where(query)

# Define query to find all elements with gender equal to male AND age equal to 30 with Query
query = Query([Filter("age", None, 30), Filter("gender", None, "male")])
results = orm_collection.where(query)
assert results == [
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
]

# Define query to find all elements with gender equal to male AND age equal to 30 with Query
query = Query([Filter("age", None, 30)]) & Query([Filter("age", None, 30)])
results = orm_collection.where(query)
assert results == [
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
]

# Define query to find all elements with gender equal to male OR age equal to 30 with Query
query = Query([Filter("age", None, 30)]) | Query([Filter("age", None, 40)])
results = orm_collection.where(query)
assert results == [
    {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"},
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
]

# Test ValueError pour un paramètre invalide
try:
    orm_collection.where(**{"name__notValid": "i"})
except ValueError as error:
    assert str(error) == "'notValid' is not a valid operator"

try:
    orm_collection.find_by(name=".*a.*")
    assert (
        False
    ), "Le test a échoué, car plusieurs éléments ont été trouvés avec le nom contenant 'a'."
except BaseMultipleFound:
    pass

try:
    orm_collection.find_by(age=20)
    assert (
        False
    ), "Le test a échoué, car aucun élément n'a été trouvé avec l'âge égal à 20."
except BaseNotFound:
    pass

# should return only one result
result = None
try:
    result = orm_collection.find_by(name__contains="v")
except BaseMultipleFound:
    assert (
        False
    ), "Le test a échoué, car plusieurs éléments ont été trouvés avec le nom contenant 'v'."
except BaseNotFound:
    assert (
        False
    ), "Le test a échoué, car aucun élément n'a été trouvé avec le nom contenant 'v'."
assert result == {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"}

# Group element by attributs
results = my_orm_collection_group.group_by(lambda x: x.age)
assert len(results) == 5
assert set(results.keys()) == {25, 30, 80, 31, 40}

results = my_orm_collection_group.group_by(lambda x: x.occupation)
assert len(results) == 6
assert set(results.keys()) == {"psy", "retraite", "cia", "etud", "ing", "prof"}

# Group element by two attributs
results = orm_collection.group_by(lambda x: (x.gender, x.age))
assert len(results) == 3
assert results == {
    ("female", 25): [
        {"name": "Alice", "age": 25, "gender": "female", "occupation": "psychologist"}
    ],
    ("male", 40): [
        {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"}
    ],
    ("male", 30): [
        {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
        {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
    ],
}
assert set(results.keys()) == {
    ("female", 25),
    ("male", 40),
    ("male", 30),
}

# Créer une liste de noms
noms = ["Alice", "Bob", "Charlie", "David", "Edward"]

# Créer une collection ORM à partir de la liste
orm_collection_list = OrmCollection(noms)

# Grouper les noms par leur première lettre
results = orm_collection_list.group_by(lambda x: x[0])

# Vérifier les résultats attendus
assert results == {
    "A": ["Alice"],
    "B": ["Bob"],
    "C": ["Charlie"],
    "D": ["David"],
    "E": ["Edward"],
}

# Créer une liste de nombres
nombres = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

# Créer une collection ORM à partir de la liste
orm_collection_list = OrmCollection(nombres)

# Grouper les nombres pairs et impairs
results = orm_collection_list.group_by(lambda x: x % 2 == 0)
assert results == {True: [2, 4, 6, 8, 10], False: [1, 3, 5, 7, 9]}


# Trier une liste d'objets de la plus jeune à la plus âgée
people = [
    {"name": "Alice", "age": 25, "gender": "female"},
    {"name": "Bob", "age": 40, "gender": "male"},
    {"name": "Charlie", "age": 30, "gender": "male"},
    {"name": "Dave", "age": 30, "gender": "male"},
]
ordered_people = orm_collection.order_by("age")
assert ordered_people == [
    {"name": "Alice", "age": 25, "gender": "female", "occupation": "psychologist"},
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
    {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"},
]

# Trier une liste d'objets par ordre alphabétique de leur nom :
people = [
    {"name": "Alice", "age": 25, "gender": "female"},
    {"name": "Bob", "age": 40, "gender": "male"},
    {"name": "Charlie", "age": 30, "gender": "male"},
    {"name": "Dave", "age": 30, "gender": "male"},
]
ordered_people = orm_collection.order_by(lambda x: x["name"])
assert ordered_people == [
    {"name": "Alice", "age": 25, "gender": "female", "occupation": "psychologist"},
    {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"},
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
]

# Trier la liste par ordre alphabétique
lst = OrmCollection(["apple", "banana", "orange", "f", "pear", "c'est encore moi"])
ordered_lst = lst.order_by()
assert ordered_lst == ["f", "pear", "apple", "banana", "orange", "c'est encore moi"]

# Trier la liste
lst = OrmCollection([4, 2, 1, 3])
ordered_lst = lst.order_by()
assert ordered_lst == [1, 2, 3, 4]


# Lancer une erreur pour une clé de tri invalide
try:
    orm_collection.order_by(123)
except TypeError:
    pass

try:
    orm_collection.order_by(None)
except ValueError:
    pass

# Tri d'une liste d'objets par l'âge décroissant
ordered_lst = orm_collection.order_by(lambda x: -x["age"])
assert ordered_lst == [
    {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"},
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
    {"name": "Alice", "age": 25, "gender": "female", "occupation": "psychologist"},
]
# Tri d'une liste d'objets par l'âge décroissant
results = OrmCollection([4, 2, 1, 3]).order_by(lambda x: -x)
# Vérifier les résultats attendus
assert results == [4, 3, 2, 1]


# Utiliser la méthode all() pour récupérer tous les éléments
all_elements = orm_collection.all()
assert all_elements == [
    {"name": "Alice", "age": 25, "gender": "female", "occupation": "psychologist"},
    {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"},
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
]

# Utiliser la méthode offset() pour récupérer les éléments à partir de l'index 2
offset_elements = orm_collection.offset(2)
assert offset_elements == [
    {"name": "Charlie", "age": 30, "gender": "male", "occupation": "student"},
    {"name": "Dave", "age": 30, "gender": "male", "occupation": "engineer"},
]

# Utiliser la méthode limit() pour récupérer les deux premiers éléments
limit_elements = orm_collection.limit(2)
assert limit_elements == [
    {"name": "Alice", "age": 25, "gender": "female", "occupation": "psychologist"},
    {"name": "Bob", "age": 40, "gender": "male", "occupation": "CIA agent"},
]

lst = OrmCollection([1, 2, 3, 4])
distinct_lst = lst.distinct()
assert distinct_lst == [1, 2, 3, 4]

lst = OrmCollection([1, 2, 2, 3, 4, 4])
distinct_lst = lst.distinct()
assert distinct_lst == [1, 2, 3, 4]

lst = OrmCollection(["apple", "banana", "orange", "f", "pear", "orange"])
distinct_lst = lst.distinct()
assert distinct_lst == ["apple", "banana", "orange", "f", "pear"]

orm_collection = OrmCollection(
    [
        {"name": "Alice", "age": 25, "gender": "female", "taf": "psy"},
        {"name": "Alice", "age": 80, "gender": "male", "taf": "retraite"},
        {"name": "Bob", "age": 40, "gender": "male", "taf": "cia"},
        {"name": "Charlie", "age": 30, "gender": "male", "taf": "etud"},
        {"name": "Charlie", "age": 30, "gender": "male", "taf": "prof"},
        {"name": "Dave", "age": 30, "gender": "male", "taf": "ing"},
        {"name": "Dave", "age": 31, "gender": "male", "taf": "chomor"},
    ]
)
distinct_coll = orm_collection.distinct("name", "age")
assert len(distinct_coll) == 6
assert {(person["name"], person["age"]) for person in distinct_coll} == {
    ("Alice", 25),
    ("Alice", 80),
    ("Dave", 30),
    ("Dave", 31),
    ("Bob", 40),
    ("Charlie", 30),
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imobject-2.0.1.tar.gz (23.6 kB view details)

Uploaded Source

File details

Details for the file imobject-2.0.1.tar.gz.

File metadata

  • Download URL: imobject-2.0.1.tar.gz
  • Upload date:
  • Size: 23.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for imobject-2.0.1.tar.gz
Algorithm Hash digest
SHA256 425c30af65d82a037c784a6d99fe1583c3404b7efaf8278d75e9c627f6ece389
MD5 f1d729ab8f7f010526b2f5e8bb118653
BLAKE2b-256 1b2655a8f80e80657e476ec0f41c637e41caab21be2bbf8df2cab0ba1708e727

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page