Skip to main content

No project description provided

Reason this release was yanked:

0.5.0 release is broken

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.5.0.tar.gz (18.6 kB view details)

Uploaded Source

Built Distributions

imops-0.5.0-cp310-cp310-win_amd64.whl (501.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.5.0-cp310-cp310-win32.whl (430.6 kB view details)

Uploaded CPython 3.10 Windows x86

imops-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.5.0-cp310-cp310-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

imops-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl (629.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.5.0-cp39-cp39-win_amd64.whl (507.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.5.0-cp39-cp39-win32.whl (436.9 kB view details)

Uploaded CPython 3.9 Windows x86

imops-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.5.0-cp39-cp39-musllinux_1_1_i686.whl (3.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

imops-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl (756.4 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.5.0-cp38-cp38-win_amd64.whl (507.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.5.0-cp38-cp38-win32.whl (436.1 kB view details)

Uploaded CPython 3.8 Windows x86

imops-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.5.0-cp38-cp38-musllinux_1_1_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

imops-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl (762.4 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.5.0-cp37-cp37m-win_amd64.whl (497.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.5.0-cp37-cp37m-win32.whl (424.5 kB view details)

Uploaded CPython 3.7m Windows x86

imops-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.5.0-cp37-cp37m-musllinux_1_1_i686.whl (3.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

imops-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl (733.2 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.5.0-cp36-cp36m-win_amd64.whl (566.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.5.0-cp36-cp36m-win32.whl (466.6 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.5.0-cp36-cp36m-musllinux_1_1_i686.whl (3.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.5.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl (3.0 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686 manylinux: glibc 2.5+ i686

imops-0.5.0-cp36-cp36m-macosx_10_9_x86_64.whl (727.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.5.0.tar.gz.

File metadata

  • Download URL: imops-0.5.0.tar.gz
  • Upload date:
  • Size: 18.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0.tar.gz
Algorithm Hash digest
SHA256 9844fb2612efec97ad7fd941e9953e52796098b6d6a0f525e61af9b002a00331
MD5 3200718b8adbeb1f7c8a583ef57b6637
BLAKE2b-256 3ccdd0fbc7acc032c5fdce10053879b065c1cc0d35a24d596062e9cb4321aaa0

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 501.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 6549366949e2e228fac4b995e2eae67e7b354709adfe98be48ef3602a8cdbae6
MD5 9cd1089307a0b744abd8be6ea1a79dd9
BLAKE2b-256 b384b843e19024b38f851f5ec8683b2730592d5994f4031724b75b5cfe6eec5a

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.5.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 430.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 20204ce04de636f7bdb6aa5d60cba0de78507c96dbcf11558ab72c74c246b109
MD5 3ace6081d88aebecc3d2baa23b78786d
BLAKE2b-256 48fd00048e013655d401975bf9c1add4794b68687d3b82a96e4a13895c4986c8

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 22df93de75fbf213f6a921d1675f6210463a77926949c08d1deeede27358eee1
MD5 b8af8b51c78cc2212382a876d9640f38
BLAKE2b-256 6efc1c7c4c54e831da93df894561a873f63517528f1c0bf89acfe30573d82e6e

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 87d09abaf82b444b67ca1da9013015768de51445d6fa764ca06f4ea5503d2604
MD5 63572744a2164417b7123a6882024e59
BLAKE2b-256 144456e336f3de192beeb3e03161be08c2e4e14473cd3ced0b65f1a4fa42b540

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 05b44e6983ffad27553bbff342d21230446241ab3618fe8793ec4967ffb52590
MD5 ff6503c17cc57ea13e5289c38c8ce6d7
BLAKE2b-256 e57df6a7797b40192fa87d45a090b9598c3e61bb658d9dfa196b576f35dda5f9

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8b0015c8c76c0a4dfb3b08815ea87424d3cda821e384e863a2ed0f9036419397
MD5 4e96c424b546bc52eae167cca0bdec29
BLAKE2b-256 6168c82029402d1ed69dd1a9d564f9af06173e0801fa68a9317d7b92d1325f52

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 70ba5c5f4647cda3c4404d895238cb62b1ce82fe4259036761252b6551a17e4e
MD5 e7dcd265dc2b37f67d5d0f12e81c95ff
BLAKE2b-256 b6c0a28ba59061b7aaa1cc08614dc3b41e57ffb0fde4db4f0406114ba09b6980

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 507.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6da79d8fd62baa0fdffebe210f5562432ea5356ca5461986319e431980ead38a
MD5 4a769ef3218d9d0dd67e9facfba7c467
BLAKE2b-256 353069c83d149135ba980145c510f2066802e38b2f62f828f062dc140daa5368

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.5.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 436.9 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 aa130d6b0e5280d8e0eade05dd620346541f6cc199828434267d53b287e46f3f
MD5 711a235cc8f1a3e0f86a94ec32593f74
BLAKE2b-256 20435fb08e276660e41814d8365f3349e889fff34a9e6573f42beee2437c06a6

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d3051676af5e34e3302b8a7b8cda89874378f84b4cdb63f3a37c23bef42ea656
MD5 8aa7a34a6d7c4ea141682651c33b8196
BLAKE2b-256 b85931b01656eb0e911016d2e0ba688cdfcaad676b995e18b2467656b373edfd

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 15f3fdad8e34473627268a7fe05419813a904b5b2eb620c673ea96b8308ef7a6
MD5 6b063e872ea88429711dff1a67af6561
BLAKE2b-256 4a5e6bf20337bd58e0282b25839cb6f775d5d9eddbd28a4bb5315aeaa99c8305

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99cc88ecaed5cd92a40cc55d3c3b3d00833e905a07d51ce4ebdbcfa25e599a23
MD5 12aa5a9d55c7c0628dcb0dc33b2a3af1
BLAKE2b-256 1b53d654e99f176dc78cf9af0cc12fc1bf6196ccd65e2d110ff7ed3030b5e20a

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 923738fb070f5c2d1566ac090b12d1a03917380d157d49258132fc3103d693a0
MD5 58e5a4762bde90a3edb1e8683d986c12
BLAKE2b-256 8489c30453286084ec1b4c1b087b4d0e9a8d40ce706deb3ce12038933affcd11

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba78030fbecf5b4ee775417d2908a68ebd1ff3ae14213c83d2efc8d35109bafb
MD5 f5921d1a0202ca5de346fdc0de172f00
BLAKE2b-256 00313fb5f4f8ce78f1724db9f69d83d7e6f918472b3f5597b4bca1c55947d961

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 507.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9cb450e0be8c25572aac4ad07209ad3573358d7caa94b91c6f5a388b92bf12da
MD5 5cafd8c58faffd9a7c080d9081e5e5b5
BLAKE2b-256 9e2abddf0d90756e24362578c17c813dd1a5706c717e1c496441c9587e0270b6

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.5.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 436.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 845a50dc7c97e76cde620fc00c1b4749dcb5be3a738b7226e7f4903a60670eed
MD5 a5c816f5907b1f1dffd97e2284339c7d
BLAKE2b-256 8a1cd8affe9625c7eba34f1f840d6151bf2b8bed39a71c89e87ce98f8e6101c0

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 02a9fa064d17c97ee05f3b3b4202c38fb1160e49722a96ab292b0d38aa4ccc92
MD5 481ea963288a3cd69e150ec0bff31249
BLAKE2b-256 8cd7f88d7f07fc19673cdf8c5af7fe3c9e32c69dc57872a36641591b96c5c9a6

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 47abb1f54e6d27ce713a13919ca8b777a28e4041e5041ecc2e775a36adb68fc9
MD5 dfcdc92d02b6b080172fbc2f1f8e0fa5
BLAKE2b-256 4e61fca4f7c39f671cdfefbb8bddcbbf344aa311590c12195c99607b68d23448

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e8a736dae55577d6e310949c34bce56eee4c5d0b0a71045a03827d36e96991e
MD5 0ae09b5b9f78e7abbe2bb1c6cc77d55c
BLAKE2b-256 db8bc9a8a3314ad802c5af60d7f4b62d7f0e1596e42e8e7f5a1c3f449eb74c79

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b648e78ac41055d238851305ac23680d8bdf0faa7e5c4050115d2e4b32894ca7
MD5 e1214f99bfa42994e1e70542ff9fbb3e
BLAKE2b-256 712f4eefff29561321a4bfe9bf5acbebe9b3043cb2c6ddf65d5744e1f1733336

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5e65fb3255f30e9006ae3f35b7649e80abc481d9db0961d1297f61efd519335d
MD5 5653d940f92fbcdd1f0c8b23bb5df33d
BLAKE2b-256 bbebab144f79547827dadf961a31d4cd1f7f6bcbd406e499baa6d797ba6754dd

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.5.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 497.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 343b2acc1e83ebbb2ba7556fbdc769a3c873041e2c1287bf775037fc76e2c864
MD5 7fdfdf1050d376dda698b0d176824e66
BLAKE2b-256 acd51591157a61974001edbc51aeeb3ac3ffbaa30675e3c526fae6c0ad9d4f29

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.5.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 424.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 a8941d7117bdd3592e3cc06c81feee9002983beecf90d8b1b69586b7a5bae12c
MD5 7c3c8bcbc2c113b7db2e5fee5c65fd86
BLAKE2b-256 803c76aa0d0dea24206bdbf82e0efcbb49549fff1fd0c9bdbc38583f55f3b09f

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 41b90c3b57b7d8cb61e9d89d22dc677362cb7ea2e55ed2b5cba38e0e0ff27d76
MD5 10ca6a56bf594101947569e8c0a1cd5e
BLAKE2b-256 64f1ed0844d04b3c1c1915455958d6fc418742c2a3b6b18d5c6c1597b1be4d32

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f91589dae722459bf9953ab6af6b63caee873e24f7301d0401755a7311062969
MD5 81c338740c297ba95ee3671a1d4d1d9d
BLAKE2b-256 9f94805c10afa0e408672e73db86ff9de80c5ec4dcc906a265411152b219b834

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 610cd22f4bf303b705f18c1c2f16c1c09c8e1b38a808c6166c2308962afca45b
MD5 4b3d115d81ede6133bddc16e1bd02753
BLAKE2b-256 5b1bd2721c600bb245db70352a7f909fe3c121698123202da16ee88ee07e7d52

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 20e5551d7886c84bb053175215891d495dfd0bd90f1b1b7341d8e5a6e8c8bb32
MD5 452dd15084cbe2d05862d16c082258c9
BLAKE2b-256 1c994115e191e1a7d939f29c8b5517aeefa41857c66b3c40fc75f9bcf531d3b0

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 30d1a57a2bbf781fa74fcb40f74ebb780075851b698f7472833e0031e729541b
MD5 2c0c4c82a67c8f261679ce75db6d64a9
BLAKE2b-256 6a508470df0e1d5fa73501809c02d9a2aa3e15da24923d6e862357e03b5cad42

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.5.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 566.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c672dc80ae05e5980cdb31aa511dbe249632a481124578018c13970818a8f712
MD5 0c67545555e6171104fa249400a6d405
BLAKE2b-256 ca65432f573bb098f556582d85c7bd2a55230f3cf23df70bbd0a8bcea675090b

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.5.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 466.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 fe71b4e0c615aa9cf6959b36fee7a437fafe41300ab18e376cf1db62832ae6d4
MD5 da3b888605f031f59b5cd01454218aa2
BLAKE2b-256 4e2444aa07053c10edc53363b61a2221eb6ba345b3dfa3c2bb8e635ea8b468b8

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 449c170e355023083337c02d5ec5c2d9ae82335a71c853e55cf722b934c3a183
MD5 72ef061e0dbe13f8072297e6ca3fba29
BLAKE2b-256 cb25927d0d9107b9c016511437797495ab170aa880027ae46ad71de5afa95109

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 a627c465e6d8af8f9a35ab50f651642f6c1998ff8e6e14be3031392d89f2ebb1
MD5 2d1705cd51f4ce5a250e97c4066a52de
BLAKE2b-256 143580b9ff22d350b2dd8c3443feaa5d6a9e3cb62c57f92add2d86372457a44c

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33922d342b8c9f7a991602c9fc62dc80b0ab256ed02950e702bbe78af7d3d22e
MD5 7198843f52d276d006b6627af521437e
BLAKE2b-256 c19752c353cbfb91bd15aa66c907f082722ee32f89d6ad4d2c56134cb4a35eb8

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f013b8a34690809918f8dace5377afa11400124f571bc1d85d4dabcd031dfd42
MD5 42b1e797e0d0186e6b51fa27e596bafc
BLAKE2b-256 a94d581b6645619262aa70293de7e45500700e413699f8904c521794bfa117e8

See more details on using hashes here.

File details

Details for the file imops-0.5.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 27dbe680be91a802fbb01bd44ae4b027ccebc8f98f2a6df138583335df017c14
MD5 16225f7808f4941bebba4d4dc82a7162
BLAKE2b-256 8629fae0f935376b44b34bd7164c8c4400c7f0325ee904bdc02533bad97af648

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page