Skip to main content

No project description provided

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.5.0.post1.tar.gz (18.6 kB view details)

Uploaded Source

Built Distributions

imops-0.5.0.post1-cp310-cp310-win_amd64.whl (501.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.5.0.post1-cp310-cp310-win32.whl (430.6 kB view details)

Uploaded CPython 3.10 Windows x86

imops-0.5.0.post1-cp310-cp310-musllinux_1_1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.5.0.post1-cp310-cp310-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.5.0.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.5.0.post1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.5.0.post1-cp310-cp310-macosx_10_9_x86_64.whl (972.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.5.0.post1-cp39-cp39-win_amd64.whl (507.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.5.0.post1-cp39-cp39-win32.whl (437.0 kB view details)

Uploaded CPython 3.9 Windows x86

imops-0.5.0.post1-cp39-cp39-musllinux_1_1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.5.0.post1-cp39-cp39-musllinux_1_1_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.5.0.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.5.0.post1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (3.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.5.0.post1-cp39-cp39-macosx_10_9_x86_64.whl (928.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.5.0.post1-cp38-cp38-win_amd64.whl (507.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.5.0.post1-cp38-cp38-win32.whl (436.2 kB view details)

Uploaded CPython 3.8 Windows x86

imops-0.5.0.post1-cp38-cp38-musllinux_1_1_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.5.0.post1-cp38-cp38-musllinux_1_1_i686.whl (3.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.5.0.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.5.0.post1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (3.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.5.0.post1-cp38-cp38-macosx_10_9_x86_64.whl (935.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.5.0.post1-cp37-cp37m-win_amd64.whl (497.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.5.0.post1-cp37-cp37m-win32.whl (424.5 kB view details)

Uploaded CPython 3.7m Windows x86

imops-0.5.0.post1-cp37-cp37m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.5.0.post1-cp37-cp37m-musllinux_1_1_i686.whl (3.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.5.0.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.5.0.post1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.5.0.post1-cp37-cp37m-macosx_10_9_x86_64.whl (906.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.5.0.post1-cp36-cp36m-win_amd64.whl (566.2 kB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.5.0.post1-cp36-cp36m-win32.whl (466.6 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.5.0.post1-cp36-cp36m-musllinux_1_1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.5.0.post1-cp36-cp36m-musllinux_1_1_i686.whl (3.1 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.5.0.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.5.0.post1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.1 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.5.0.post1-cp36-cp36m-macosx_10_9_x86_64.whl (900.2 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.5.0.post1.tar.gz.

File metadata

  • Download URL: imops-0.5.0.post1.tar.gz
  • Upload date:
  • Size: 18.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0.post1.tar.gz
Algorithm Hash digest
SHA256 5dd35f9a7a38c750e98881622667f1d3f4b9056249b6c12ad614922db88b685d
MD5 07c4f21120ddb80d331e68dc5bc1faeb
BLAKE2b-256 1aeba40b104f73891c14f099451bb9bc53056ec6c28f0b3c3e1f6fbbc291063f

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 aa7736e39a82dce7e580cd69de03ab1903f365363cf231d53a7bca537f3a1f7f
MD5 c566481408ea604b3ab2ba970cdcf926
BLAKE2b-256 4cb58880e6a836d9d98ae4452cc193c4866bb5e0ee1e1900d3cebb3f29e59448

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.5.0.post1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 430.6 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0.post1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3ea97982146bde7517519f9f9a3ac184f283bcf8f73df3a8990c3ea4e846eefa
MD5 bc4c0bd46a89c527ee0d83ee1422a6db
BLAKE2b-256 320f062a71a2c9ca77042480bc7367a31a9933c063cb2ed6bfb5e44204988d23

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2717a6bf8433654153e361d868d69ac41cadee57b17216469d147d0176d64f96
MD5 54b1c9f6aca1f611394fca60f9a98245
BLAKE2b-256 06450659ee1061c2097e0361b0e15a296801fae55bf4d1be04c1d9da1d399de8

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 af2dc58e98512e97f1449797d596a4da492f5d8d4e8b38f2364a3047c4016e0c
MD5 8f7b38372bcc75e1420e9b9570453498
BLAKE2b-256 2d583932717675df6d8d0d99287ca17d5f6f6ff9f12923f3406b5737dbb91d27

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 52fe8aa2050a36bf1433ebc4be2d7c8a54b1976df9f6e2220bd01df50a1ad1b7
MD5 978ba1b283c302acdd434e2105a2b400
BLAKE2b-256 c4deacca7931487260b2546275f0ea5005b49a0e5590325cf895339325bf3595

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b36eb76a76d8d9a7948190fca9934d1e7b38350b5a9e67f340ebab7ff3539fcd
MD5 e1164618187970a4a0aa509f5de3137f
BLAKE2b-256 f43b98969db37ceab8262b44909071f436db16488079c297a6e0b08e2e8d82b2

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 19b6ed8c21076102327039b32608d2a8cef3e1db2721233511b1c66910e7d0b6
MD5 adbbeb224b12499652c9784140943203
BLAKE2b-256 6c9eb095aceaaf0d1a43dff61047b4f7b8fcee1fb2dfb7d58bb811c44013559c

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 920a6c598b22e80d8740575c8b3b15c820dad4435a78cf1ea250e971790c2b42
MD5 6783a5c621488597c2e36c7d3002174d
BLAKE2b-256 ed0fefef8f08fb56a9d33d0a324b62eeb4178dbc66af7b5d185e0c6798dc56e0

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.5.0.post1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 437.0 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0.post1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a4eeec5f17cc7b4ea2d6d51418598b3fdde8f455a457b6ec96b0f37e8e776d09
MD5 89ca5642b63c54abcf84207cbe94c82d
BLAKE2b-256 76f2e8adab39423dc23707616ab07d5cd73e924a45b5c3d5c5714f4df28ffa03

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 185353effcdab81e6afd41bd8c56afea2c71ea60200e365d0948b811c294767d
MD5 ccb1ab4e1934a90a9e1ce4005b0aa9e6
BLAKE2b-256 2046c19566a4ab63a3ad3e3206f81a8434e53679142e7435557ad9ab51b886ec

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 47f7724dc7bf11fbc9c255067ccc8f11db0593b719c55f6a71295a91e41ae745
MD5 8a29331cab1428c91ecdfd0bf369c378
BLAKE2b-256 fc6edef7f0866199852f265d4f536135f5683f4c132f37dcc6d0d45c9d11a272

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 97bacc2806c061990b2b017bda17be0ebb38727ed8e3829e9d17e610f4f226e7
MD5 c22bd221da5cbe9723fac11348443bd0
BLAKE2b-256 563940bf462bf46f924c285f0b22efd862a8371e9ea096e3cb9ab5692d52fa8f

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c2da32efca6210d1eeae1e570fe746f0923b978bf7caf26d5c83bf2489536ab4
MD5 90e6b56177c397a0a3d52e12d3cec023
BLAKE2b-256 05b131fb2a56153d22e0fb377d50a16efc88ce3c34e63a3fea6010238782f0b4

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c3d01960e89fb0e83ebc490c39d8e1a28d9d280b5059981571cc14db157f4fa4
MD5 013c167cc3d457c51bbfc5787739cf99
BLAKE2b-256 df33ea708fe4192eb8cdb5c77f575f513049ea73070caf2a106c392b7cbf6391

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 392c104fcd5b387ec8042bbcafdb58560feefa5e0aca338109e2a1e6ff4dae90
MD5 4de2240cc5bfc231eacf760728b322f4
BLAKE2b-256 44c7c7f86fd7968570bd9089dd1569d995226c907b5da33da7493f09c8b1fae5

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.5.0.post1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 436.2 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0.post1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 b2cf6e0c27e3d93c0350c537cf6c7d7bc714cccbbbcc334f2e12ac50650325bf
MD5 278ca0c0b57a503270a1ae303f645955
BLAKE2b-256 5224af28bed5a3a5ced017cf1ce385ef3676cfefa741043e0dc72171940411fe

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a84fbdee0e664d8ef74078156fa5104b44159b6d49f471c3b30a66a7897c29e2
MD5 42f239ab43183e3c1c37ce1bbea2dd0c
BLAKE2b-256 1c15f49a37feb82a367a965d7a203a4c2e3a4ac32fd03690e0d151b30f752cbf

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 de5b1836a360156b5dad31c2f43f3e0cea41efdb42dea2f85222b0fa533fb90e
MD5 a4d543de1edaee2244081c148f614511
BLAKE2b-256 5b2aeb503d35b168ca5f0dca3408e983be9bb5e54bc02e88e9be5e312e663423

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d19f817eb4d0d508f9f2b26187c2184b4f87f956f91e2d424d64777ecea7dfc1
MD5 6bca1b1a569536e5a66a646bb711ed25
BLAKE2b-256 c7a68547cb43d1c9ac94ce39274664624dc3cd841956e00f41a530bbc258d3e8

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5b212ec5d7f4e3ea36a612336e50807e662822ec4c0b85d9f786c42620ef079d
MD5 501726ca9457217668e0f2045ac743d9
BLAKE2b-256 d50a9db4d319362ef4e5339ce1347268c936f1dd9012dfef4a75d7982e7ada88

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f824c3391868d0c5b78b3c32d78ca75b7f4fc873117a94ed8dac1f39d06ce003
MD5 7b5d0c7338ae9282f1971ad4bf39b2e7
BLAKE2b-256 64075a7a049c4ee3c3c24caf99b24f4c452adce6492a079e0cae7cf4fc32e023

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8963972bbeeb96f72b9fd1e246b66ac05a0d56db09d09a697729e546bbc24ecb
MD5 fd03811beb036dad9485ec301ee4dc99
BLAKE2b-256 fc84b93c76a51544b73d532d154d6cc641daca60215a4dbc0ad9bde8fa04b514

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.5.0.post1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 424.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0.post1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 f757958e2379adbe297ecf456a11b481ad42b664cd8f384a88876598124b82c5
MD5 52c39d2ad4aa4e0c39093237f4133b05
BLAKE2b-256 520c3c7e11217f4f6b9ca6e0254fe95011685cc440e0a0d74f3fb0ba09c20f54

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ee5489ad64f2f65d0977772031abd0f1ee8de2d1fcffe9e4510078b05741f23d
MD5 737d9fa2b4ecadab98c266419affe86f
BLAKE2b-256 b0bdcf6d6a0012a46685e5aa0d94d3befe1715780771c03ff41a99aca2bf8b7f

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 bb500a2aac32c87afb1dc1f364550c713d2f417a0cc965a494621c8aa4cd7ecd
MD5 34cd4695257e09349ffe0d5a5931512e
BLAKE2b-256 95801211c46d7abede0a19514b49a1c3975fab682a39d992795701eb33067c2e

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d283f1191a033938c74d858aaaf6ddf5d006012a769ce8ad407d2b07ee97f08c
MD5 aa6a175c1b58e1b281fb06ac14f341e5
BLAKE2b-256 7b8c1a4acd044660cc8794c5a32e942f106a7c63ac6909eb37fea7619074d195

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a16f80fe8ab5c1f2e42637dd6dd54d8b102d947046b496579609196982ac8d1a
MD5 27667cc6582773b316bed15cb4d2697a
BLAKE2b-256 abce272a5b0b7ea5b0a2e4ffb09e1f3dce3b737e042272e758b6d5d0daf9659f

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3ae902f58051eebbc207b656383c995a7cc11d45d899eadf7755fabfafd6f991
MD5 b700ec31ede113375e3572448bc08f7f
BLAKE2b-256 dfacd67e12e86d983c2684f356e34925744e158b79675c18fb30eb25c0893cce

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 53bdd1b28baa91b4844239cc56e56029b36d10158dd8379ff98a4fb5dd0a7918
MD5 caf607c3016b966a6d96765b52bc2300
BLAKE2b-256 b74f1f00e24594b500d238e8e987abd6602ca5d721c98527d19379d70dadc549

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.5.0.post1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 466.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.14

File hashes

Hashes for imops-0.5.0.post1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 e36abeeddcc98523f513ebfb07403e08581fdddb273b52e6a2c6e0b5d3728856
MD5 b5aaefc8fa7d5c9791f5caa29bbbd3e2
BLAKE2b-256 f66aee1d780a0edf587256af2dbde727ba0f62598f44e32e84b93dd78b914c08

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f39bb23f1774bea6f31855af1d355a89d07999fe2accd43e8e77c9ee75187473
MD5 77be785e9a7dd59e2a450aefa699c9cc
BLAKE2b-256 b001f992019f5fc375bfc7880c462dd197fb7a6786161e625a94a9b2778fdc35

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 db1f78356d7ab1dddb5842ace89785d5a53edba922f8e79b9cc536fa654eac92
MD5 5b7c8b11a3acb0c2a35571ae3439ecba
BLAKE2b-256 5f5d3e3aedf0a97584e30c82d579499530d1d7e645aad7a1c0c80dce56dfe042

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a60efce79055696e67c73d1be58675e8fc34202632f9031d680a8d0462e6fe6f
MD5 15efea85c84e254f89171e45980b041b
BLAKE2b-256 d4ba835423f3a510340e68444931f70abb91e39fa6b57890d524a356d123e603

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 01bbba3e96d193daa3270c1c5ba2dd871390eab9c9f15f4dff409e84832ccdc6
MD5 61ed5c102673d9199077e35aaeac688a
BLAKE2b-256 e0cd96e1d2691ac505a371f58641a42db29c1d3cfb2cf0ddf14cc2eae637a3bf

See more details on using hashes here.

File details

Details for the file imops-0.5.0.post1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.5.0.post1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f4b44d76e47e5d3c58d69544b02281aa6d66dfac5b7835c2bde5f12defa01d05
MD5 8661cb54a7b4e0cf969fafb8f77cb524
BLAKE2b-256 443074666fb1c133250f9e2c0965865953bd5d501f240270d8218df8e0232299

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page