Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.6.0.tar.gz (21.0 kB view details)

Uploaded Source

Built Distributions

imops-0.6.0-cp310-cp310-win_amd64.whl (623.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.6.0-cp310-cp310-win32.whl (536.4 kB view details)

Uploaded CPython 3.10 Windows x86

imops-0.6.0-cp310-cp310-musllinux_1_1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.6.0-cp310-cp310-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.6.0-cp39-cp39-win_amd64.whl (632.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.6.0-cp39-cp39-win32.whl (544.3 kB view details)

Uploaded CPython 3.9 Windows x86

imops-0.6.0-cp39-cp39-musllinux_1_1_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.6.0-cp39-cp39-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.6.0-cp38-cp38-win_amd64.whl (631.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.6.0-cp38-cp38-win32.whl (543.4 kB view details)

Uploaded CPython 3.8 Windows x86

imops-0.6.0-cp38-cp38-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.6.0-cp38-cp38-musllinux_1_1_i686.whl (4.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.6.0-cp37-cp37m-win_amd64.whl (619.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.6.0-cp37-cp37m-win32.whl (529.5 kB view details)

Uploaded CPython 3.7m Windows x86

imops-0.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.6.0-cp37-cp37m-musllinux_1_1_i686.whl (3.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.6.0-cp36-cp36m-win_amd64.whl (708.3 kB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.6.0-cp36-cp36m-win32.whl (582.4 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.6.0-cp36-cp36m-musllinux_1_1_i686.whl (3.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.6.0.tar.gz.

File metadata

  • Download URL: imops-0.6.0.tar.gz
  • Upload date:
  • Size: 21.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0.tar.gz
Algorithm Hash digest
SHA256 cb5f87c146b0c8b27196baae4666f8bc029b4c15cc411ad410f5d6fede2e7ca1
MD5 093a70844496d45afa6778a6029e7d36
BLAKE2b-256 5d83c93b5f7c0749c433fc73b45c79d12b6ff095115daf7cf31ab102a97a0891

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 623.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fced11a5d4c02e38be56d61cbf2da3f66aa2d967066c72c2a75aab6c9ceb53bd
MD5 e71abbb4977b4a01e995f7ed9cfd3373
BLAKE2b-256 e2fd15931b30e156f0b671bace1f12996231b7923826291ee170e04c056dcb8f

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.6.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 536.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b7d792ffcddbe246ac6b1fb4c08493f3cb2d3ccd153bc35c06398aced9f11d63
MD5 85848bc1183ab8b7695c3e4f3c5be09c
BLAKE2b-256 d07da09f1f7a9c3b6ae99ad513466b6ae5df14bb7194939379c9e5d0e2eea0f4

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9d1f0334fc7ac6c086c22a89026a51204a05064c00599f0cfb42cb9c225178b7
MD5 bc25c2a2d3a3bd46310f496b1d0cae82
BLAKE2b-256 0bb13aa085caa89ca606ff2e9e6c46cc21432f8b246a908202af6a7facfdb06e

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 91cb21c9f2deb9b5da3e9bf469877fffa78ad969176d4f9ef970de2da9975cae
MD5 544b728c3944d801ceef327f9e267c0d
BLAKE2b-256 c9a407a3c54b04003c8c5e5bf3d21bed1e05e9f226f554eee31e1c1ed905578c

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c32e29c11ab3579a463818d0ab4bb92932381e3099674da75eac271e889159fc
MD5 49eaa1ed8ea9751472590f9ccd76ff8e
BLAKE2b-256 597c7e5fc648911d7eb544536756b08f25889a72127c0378f813468f2e400164

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 09706532044363a37d30dd0b779cf4ba715ea1416d8888f0a1287d9214f3ed02
MD5 b775c57222abebd6274ea87e78c4ae73
BLAKE2b-256 8034731d8a4ff0483ef17640ba7370213a26f03f66bad2d81c4e6796a8bdeb06

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51f2684d527acc2568a4d9622d7987425308a1cd434333b1b85d1a489c0ac3c3
MD5 79dfc4abfd238a7bc4cf7ff82051b3a5
BLAKE2b-256 01e8df793352737cbe4f00970eb401efab4c2b179ba38f62367809967db6a89a

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 632.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 db37e551f53751ab3664aa45a001ed082415adc681725b67a373fc5d54c3fcf6
MD5 fcd356a6c5fe3a6c88a0faeea2c820ff
BLAKE2b-256 13b80f7b763e5f4af65b11cee8bef1a925c9ad15113a201dfbc38a786fa2c814

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.6.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 544.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 974c290da7eeb04f56e50672e9f78ed368144ec646887367881629b7f204f29a
MD5 760322f832d222410da593eae05b25e8
BLAKE2b-256 60cd83dc8196ebaac989bfbc2bfa65072126fd66deeac7c1b064c5eee588a020

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 60c2cd7e4fc43b664201ce1fd6b80db2b4b9c7b74a58a3f892cb413448ab315d
MD5 454099fbb31baaf238c564d458adc913
BLAKE2b-256 bbf4b47962389e5cb5ab2275b9dbe9b031e86745dc6abd841a84bd8ba1e0167a

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 29153af86ca233c49271d4740e778d103146ea7c7dc97cf49b84db3a4dba8749
MD5 ddbf0a7e5d87914c5eec3ed73afab18b
BLAKE2b-256 f51027d8b4417932253746fbddcc9c225b4f321a87b7b23a578da3de3e91c08b

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 baa45182e9ae832024977be9f8a994dc8a16303464c637766747d6add2bd9f83
MD5 fe9708a216121b8d07cbd08506e45235
BLAKE2b-256 34958ddf5dbda3eef275dc4d4ca3279d2f6fd0726e99af6c783a8e716ad240d9

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bbbd4deb1ad013d91a8c5b7b4fadf13d7eb60d9d2c052a5a553bb92275890cf1
MD5 1f274d3868ee8abbf4dbc84fe5dc28fd
BLAKE2b-256 9dbf4ef03742f112d96868452534a04d197d08c8bb9857bf978f7ff220f8556b

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a88b89400b37ce61db9e5081140930b28fa228637677fa3c6eee82302c264984
MD5 f7b3d4dc3d47447ece26d79b9c0e561a
BLAKE2b-256 2aebae87366f216c7b4229f5a10bd62fcadca6b64931be5119753abd28d6f3a6

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 631.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 df86ac1f6d7b68ecb53308443838bae38365a9ac850bec720dfaec0afb0affcd
MD5 0a4db4da9380aa5be24a993751e42d2d
BLAKE2b-256 b4cddf0747feb615ba9ef127e2038788e569f5cc565ab0d35529655971bcc179

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.6.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 543.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 3bd8dc28f42615f0bfe9ca6cae17f778cc34fa9774a5c06c361f52596132f1ed
MD5 6ac28999cf4ec3b9c938015f5d784e52
BLAKE2b-256 faef6f2c33ddbd0775dd268c999e4bd8288a8bdc83803aa7345a0888d831cd54

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e7bf8d39e14c5853c4e983be8cba8a160c98b77dbe6c769a2c26f920d2bbf2dc
MD5 a17c4652524b7c45b8689967756e9d09
BLAKE2b-256 b5a0257075e9194d0c64ab68f311a4b687b1f44ba7577e5c4d1f863fd0e9cf4e

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2f90aae0ac3864450b4bd8656a08de953af5aa684a216e804b9960408215f364
MD5 84a081f9a378a23eafe7cf766d826285
BLAKE2b-256 8a2fb07ad0f0081d6250f452d921da23b34e499b861ce0c82c432283e20510e1

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 697ff4e0218ef26044afe9860402f73ae74a51f2cd7d63793c725430784e4c48
MD5 5632cc889c4962470ce8812b0b62e1aa
BLAKE2b-256 5b39444597ab6d64ccdfbf28473b52104e526eea41238e4eaa68a68777235636

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bc201d0f7377a88836f39334a9801aa5f23938cc15b282e6431022c1ad2c3c77
MD5 5ea79df78e9f9700a70880c4c309ed80
BLAKE2b-256 c22327a772cec32fa3102b5c1f6e71815487a86f01e7918465ec956c33fbb774

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fe98c02e36d25e863ee844e1909b47dd7736e176bc6e60aa435bf91b0ddff0f3
MD5 aee1670229b0024b90c6550d2ea008e2
BLAKE2b-256 e69cd81adb674e004cc7affd30a101ebb3cc140b67334193b4f549d4bda45521

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 619.8 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 ef00789e7c4c5f89cf121317020a7628060f83d4924ba9018136ac25f430573d
MD5 e1611a668e3566f39dc6be3d8284ded4
BLAKE2b-256 6163055e623cfce58c25a02889854041553d611a3823b33dd03f8de7f9c61d99

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.6.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 529.5 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 279b7963be525c6f40a5f680dab15d15d8c677f11fe1d119c01dc8417a957ab9
MD5 5fe93ad48d09e5022e0b2436a97a5c09
BLAKE2b-256 47caf141f1482a9ee7e5334592faaf6acb259b037169c0d5586538d61d4e41d2

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a5923f2266c7e9b7ec3034a08fd0a4204719fd6efb3c8608b1cd003a7ac1d67c
MD5 212e6346e84477e667d1489a11452fa0
BLAKE2b-256 c69c69000d7d2a702ee898825efc52315579eca2430c5625e1436696e639a6c7

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 911eaa70c9560b2b1aef77f41e7107f24eb2569a95c8513f88edd48d11c2cf78
MD5 c5c2fdfe98cbeee76508bea50a62f1de
BLAKE2b-256 19b4bd32a664b2a5f6b5bd2b3b34ca9ef31a9932e5f4ed6397df12263063e7f7

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 219de9615c3dca7d6323541bf9b758612db44e9be6304d48c9d2ad48030e15d8
MD5 0d7c6b219dd3284b86080b5578876711
BLAKE2b-256 308b588611783613f54a381fb827d18333e600d18ec37427c69ab2f1becc3d01

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 02ccc6caaae1e337a177a67c37457d45651986b76afe0f100ef7e6f2eed86e38
MD5 698709d58af183068d939b4e3601b0c0
BLAKE2b-256 63c24df4be46f91235f04004693a5028002a6c18716f7c73c2b7a76f48211e54

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc3e7d7e6aff6dac36660f768a580967b40b6b1f536b115287616856ea1d87dd
MD5 6d809b5a1da37b32f2246be64c3c6a35
BLAKE2b-256 08665416981ee49bfda09b68a4bc874849f5248c1fe1589ecc8b2aa2c2c57a04

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.6.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 708.3 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 c1d41624e9930484f456ba9e82b5df120f618ba3706a9553da27b55bd0d9f85d
MD5 ebd0230f2f3e3e7dee94cb0b5eae2718
BLAKE2b-256 05a1bbd90b76bdcdfc6ee512b52b910edb20e34cda192e685652ebf87d22d669

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.6.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 582.4 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for imops-0.6.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 d54845f38c873af9435ee7e204dc6e26c28726cc52a9dfdaa6b65d3d39aa572b
MD5 40f4a48d6ddc7a2fa0b0ed1f78e0f2e6
BLAKE2b-256 5bf5d37f7d687ae662e0a2efa5c4910b5d078b36df217b7e851e040ea66fa23c

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ed132492e9259ef6fa96e058de44c6a7d7d3a9b8eaf9757f858c115eb1e0f5b1
MD5 76e74109be8d48e1ed5ed50d8718cf81
BLAKE2b-256 d45ea66751507ab2e2037c18e8b1e52f0fb72f875edfcb3d054797c0cc8b61cc

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0d3a29630cd708239251f480b689d359ed9b2d6c0728a2bbc9987354ca7bd665
MD5 0f1d190c1e64c60a7262d081aea2940a
BLAKE2b-256 a8798b02ea2957a6e060d04e7ba9fd9b0d3d5a377082ca5f2553653bac52d3c1

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5672808bf2faedf245f754b3085972688d17eb0bfe25040c89e82dfbce575a2b
MD5 d875e790db3a7aa3578c132dd625df42
BLAKE2b-256 5007357b354bec51de6816e3bc64aa53236420bed3bd20b1987c97143151bd61

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 038fda6856d2081a0b25463e78864e8e347b7333e5191d87ea5515d96a973f33
MD5 6042edcb3653223ce02546c394e7ef1b
BLAKE2b-256 0082204cf608c080f099b5e916ef9847cd78565234a7328c7732d188a717197e

See more details on using hashes here.

File details

Details for the file imops-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.6.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bfecb55c8aa310ceadaef94a8286f37eb7567a7f17902b8927b4dd2517893443
MD5 ddba1ef403e86dfcdd4be0c382b6e10f
BLAKE2b-256 9f1f26b8a0db4d45615a784ef356bf471ba265869a723ead3f544486fc3fc656

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page