Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines. Docs are here.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.7.1.tar.gz (25.5 kB view details)

Uploaded Source

Built Distributions

imops-0.7.1-cp310-cp310-win_amd64.whl (632.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.7.1-cp310-cp310-win32.whl (542.7 kB view details)

Uploaded CPython 3.10 Windows x86

imops-0.7.1-cp310-cp310-musllinux_1_1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.7.1-cp310-cp310-musllinux_1_1_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.7.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.7.1-cp39-cp39-win_amd64.whl (641.5 kB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.7.1-cp39-cp39-win32.whl (549.8 kB view details)

Uploaded CPython 3.9 Windows x86

imops-0.7.1-cp39-cp39-musllinux_1_1_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.7.1-cp39-cp39-musllinux_1_1_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.1 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.7.1-cp38-cp38-win_amd64.whl (640.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.7.1-cp38-cp38-win32.whl (549.0 kB view details)

Uploaded CPython 3.8 Windows x86

imops-0.7.1-cp38-cp38-musllinux_1_1_x86_64.whl (4.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.7.1-cp38-cp38-musllinux_1_1_i686.whl (4.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.7.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.2 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.7.1-cp37-cp37m-win_amd64.whl (628.0 kB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.7.1-cp37-cp37m-win32.whl (535.8 kB view details)

Uploaded CPython 3.7m Windows x86

imops-0.7.1-cp37-cp37m-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.7.1-cp37-cp37m-musllinux_1_1_i686.whl (3.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.7.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.7.1-cp37-cp37m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.7.1-cp36-cp36m-win_amd64.whl (714.6 kB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.7.1-cp36-cp36m-win32.whl (588.0 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.7.1-cp36-cp36m-musllinux_1_1_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.7.1-cp36-cp36m-musllinux_1_1_i686.whl (3.8 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.7.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (3.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.7.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.1 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.7.1.tar.gz.

File metadata

  • Download URL: imops-0.7.1.tar.gz
  • Upload date:
  • Size: 25.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1.tar.gz
Algorithm Hash digest
SHA256 e9d1a38f9a8c3e579aee25d779ca535932b82419929650a930c3ad6705279137
MD5 0f5669b2626304785e9382a2de68b01f
BLAKE2b-256 f21e99b58d387afe55996100943301ffb4f1e7731a96617e16b6c48b77e6c424

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 632.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 eb44a5ce22f07b972122835373407daaa53a490e2f5abc4506a52778016a6b88
MD5 1c53777a0031a8332d2d29c5d9b337c0
BLAKE2b-256 24644b4a540f1fe48d9ce8b32206c2f6a17f6c5c750ec0289a15202dc452bc88

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.7.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 542.7 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 b99d76ddf355fdc74318318dc01907e2160ddc7c12f465c412c98203ab357d9e
MD5 8ffb2fdcc91bdb6dfb7dc0308acdb2ba
BLAKE2b-256 8e9ac368fff67376d75baa58ce07ce53f13300f88d1883f90fbf503a553ea5e3

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d14e7a99921a357c52dc998915b98392049d728197690ee317450753a6342266
MD5 e696ae4057361524c16d64971c435e34
BLAKE2b-256 80265d00679b8eeb0b23f03dbb14130f906fd2e88381b0017b69f63e7dc8ea91

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 5a2b283b6f6b461b22ad567f9213c75a318e359b90d219d16b6f117380fb5649
MD5 e59f04060303cbacddee3584f3afcca2
BLAKE2b-256 df783fac1a0f4fd4a644364e7a3b3c05018be0db14a5bfc3e9320e7c9f47d259

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3e0e0cea955f528afc5c2dd868b8f1b618d1206d439095fbfc0ab119af2d5f5
MD5 a26f790b7e3286e1e75627cd59b17ab4
BLAKE2b-256 21bab10afc11f55be897659e6306501a788379050333bc9d839823505d155a87

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0e0fe41556b1dbdc81d90be913c9bcad7e8a30786121f601bc54955c8865f7fd
MD5 9a13a4c871ff4fcedc6ce0a3ac3bcc13
BLAKE2b-256 9d558238c944769fa288c8a8577143b2a562b507e3fe91a7a59e1d2308119694

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba75aa2424e808b2fcf164082a618ceff0cbb28a2e3cff08b24f1054b09cfb8e
MD5 c36aa1a2543bb97c1675d47e485f8118
BLAKE2b-256 20880866bd5bba4c5ec70dcc0ae08668293b62235cb7bb4f809e8cfe6458727d

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 641.5 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0f6f9b71126ed95d8007b1806859bc93e5c53d8af53f5b95ef172c5d1c1bf59f
MD5 9ae551a8177b3cf3995b82442ab7d929
BLAKE2b-256 893e2c25254e9d16bfa89c116816ffac656b781ba975fd862a99c1bf0f6abbd3

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.7.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 549.8 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 08ce04492e4ffec49d25ae68afd5c69d75407049e552babd87b2e88da36fea4f
MD5 eaf6166f5066440fda629ff67a2cea2b
BLAKE2b-256 47c65334e114773b112862f7641876b07365520e497d4b547a28a6eb4d7bce5e

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d3c1a30bdadf4e9f7d77b3c9119596e213daef64f411f9b69efcc93ef8046181
MD5 9de7a5a60cc31ec530679d229177fa88
BLAKE2b-256 e82a447c872cfe3798984d1296d031cde0043c4578299af146526c536932e2b4

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 08f6c0c59591b24b562954597f93cc5b6294721c2fb1c538e784c397b3e4d959
MD5 279dd5ba4775f9a5fe4bb5757b9c68a3
BLAKE2b-256 9b4a0a8195ad4a2bb766946d950b6c2bfeef614c21e7d903f01829e291512652

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55f78330c71c7e65b32ba85896a651e89c76d31955d245da65cd1b648a558bc2
MD5 e8b187a88e670d5283591368813c6904
BLAKE2b-256 1772f9302f0c674698b3b361cd4a9281d13b014e4e7468a0fe518160f6b13169

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4c87a0059e3b86bbf19f8cbbee1cf18bfe7c648c79b49446e2af6485438794f6
MD5 cb3648aa66a659277052cde1624102b3
BLAKE2b-256 01e65795955136efb86fc8f11c450ce6284ec614c52a98313a66560c56ec5c40

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cc5b4cd36694f65a998b4785c400ed60edb4c975d3e583cd59f2cfab44d7a39f
MD5 7d8f6c97c48eca553c752b3b89ad762f
BLAKE2b-256 ab16959239e9f1e1cc0bf96df81cb76745ab04e16c01fadfd030f1e86f5975f8

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 640.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4be596ed37d592c6e1be2797b0217c1c95ddb2404511be03cc529a67a5e1c8a1
MD5 fd30fed4e3a9c4e49759ea30f0a3df40
BLAKE2b-256 0276d85f77354ad272f0d7f947acd096d6c09f672a0d16331a4a57bd50fe9314

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.7.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 549.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 af366cd8eaec36fc4ac398b8348b2f5cf4a08373375a9c4068aa6a348dd30e71
MD5 a2fa9eeb3d639f9d84f7be2d2cf41738
BLAKE2b-256 da48350c000a68577ed785c47d43ad7ea5eef6c509f63a7bbaace26805a55148

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f7306f1a33959de972a9cd7d3ecca45bc2af63e9d963d06efb11545d515508eb
MD5 997158a4c49b6555a45eb2881d1a4bd8
BLAKE2b-256 be58745a841182c06f2b9bd2369649d1a7fa5b5bb35fe590e8927d80548719b8

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 612228454df9f65a191500587b2820bdf355b1d0f4fc3c0822d03964a7912759
MD5 965af4ba7fffcfab7960e6bf2142270b
BLAKE2b-256 aad899f6fad7a477a69a8ae99f108193648fe816ef73f1ee0fd167e7f519a400

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98f8344eaee230139a12b20206becafb1fe063c2e85a12759c2425da087d6c7f
MD5 ed3bbf4643c64c59206f131988fd3f84
BLAKE2b-256 a53889fab003d8352996e70684c509f5b0f404d43169e6947475ae6877d0ef96

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9ea6b5896343e3b889e2d7d5a9343d9efef4fad6554c7fccc82d602741592f70
MD5 3e9ca8383f8736e2ba258d1384108383
BLAKE2b-256 a86f49c0a2b22c33aadb21b6907624aa4102a5f04804ff1706bd438f4fcfca49

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fcdd24dc928fb471d0c514d1be83235a7880d345d8da8ae28ae914cf11ae9374
MD5 db7f54b098e36891b46b41ca09d3fdda
BLAKE2b-256 4fa25fc6789d24091b128a338f14ab9f40711e29dd6baa62c3f29b7e165695bd

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 628.0 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e78b3e9df7310478ed7141da207344241ca1f8d592dd25449eacbcd2cf51a8bf
MD5 a1a47f3d166d9476b9eb73bb584cb7f7
BLAKE2b-256 14c838a48c686a80841b511c86fb3427a82cd393caf1eebb08a393b3e39475dd

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.7.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 535.8 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2fc2810575070d31b5f80cc17b2dcd7b73249e9b5a080c94583a7ce1f666113e
MD5 b822447d3372e72caacaa5b6a1a900af
BLAKE2b-256 646007c4446c04a373cc6dfbe4ed62a591b567d845c5a49f4b4083cd9b465a5a

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8fe324825c809fd6e4264a10c441d636995675875c62b94ca1c143160976cd96
MD5 815b85baae708e4f89a3946b75435805
BLAKE2b-256 42e187297dbbb084365a2e58ae938b4175c16160f3f06755bfffb49a8b0bc0fc

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 530d7782c7de02a45fd75c3370a435e24ecdfec8918c8385bac9283667882cd5
MD5 77584a97dcb7677444999e2597801a0e
BLAKE2b-256 5caa1fa8dfbb42f9b34ff610788fb19c5a86693a84fe6fa3f54e287bfc8ccd63

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17428285a2b998605120ae5af4de08ecd0416c9b67db3c3bc473188c2c11704e
MD5 5a4071ce089926a1b5058f7e1de849b1
BLAKE2b-256 a74fd77df29f5f872af25e00c01a7741561cf631d24ac7cd0bac5cb50efd3934

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 06c23d0d3714d383418fee8f8ab30abd7013b11eee9b004fb7c8dc8ca0a687af
MD5 37b016ef0fa8b0db3019596d272bd420
BLAKE2b-256 80415a99a2564ac313bbffd0be4ba478580d8b51a18106975218c680a087c530

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4050a655e4f387c730f10b22401e7a744a48ec4b67d8fe4a02bfcc47a5f26bd7
MD5 aa4185326927edf69ae991ff12968050
BLAKE2b-256 64b615dc26c905fe77cc7a63d841346500b5afd5a85e5be75ddcbdb3106aa6cc

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 714.6 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ab0d8298f09242f00fe0bdb1dc80b3b867d48a267bf91d5e87a42a8649f1964e
MD5 2159fffa542cec49eaef8f0ac43845c6
BLAKE2b-256 02e547af75f80f47d92e102c54caa70889bcfc9a7ff67a39287bea78d2940e98

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.7.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 588.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 8a9c160d48a2352f4df621602713212e1edc5a26e761aa4acca12c588e11d5a8
MD5 81be05eed02d5ad88b8d4d8359b8209e
BLAKE2b-256 064989e7d2270e3ef2a8011a0e7fac46bf584df68633ac3809bc94d5ae924ec0

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8e78a41fec8baaabe2e5021c74d8293cb60404018b86fb5c8669f4d5730e8adf
MD5 8767b482db2b4a215e34db74f0a892cc
BLAKE2b-256 556a6615a22cc0fb173b38e66c5e70e11552efefb93eff32ea07de8605898844

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 880c0157910db20a885c89fb0acebaa1d7583b19cdf22226b783b713ad679ce6
MD5 b512e3285fffbdf92d66cbe516bcf700
BLAKE2b-256 07046e8f8fda3d3f8b6b09709d33c0d9b6e64634019aae1a1d406450a3541ce8

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91092f01e218387f5ec7a5ccf165e0a50513c10ca7315730e1130419092f472d
MD5 7d4bc7e75b37b57c852f28699a3307a4
BLAKE2b-256 f5f8d9ab0759eae8fe98f927deec2d2650277bed6cd67ce23de43d231f9109d5

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8b01e42e9f1210113250490a98849fd5b2e872473abb6a93ae1b99f1a1f9a7f1
MD5 eed0fed7714b2fd1b5d176a6b339bfc4
BLAKE2b-256 0a7bf7618a05524f2a52707e05183553d64cbb9e6b4564012e2ba08b84f69b75

See more details on using hashes here.

File details

Details for the file imops-0.7.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3e0dad7fcb2a8f5df7671568c7d136c6d7b51ae46ea91723d25ead186b76c331
MD5 eae72690e5be6acd078ef0fbb5e74032
BLAKE2b-256 6deba83686bb718e5c5f6ad8858f5b5e3743409bc6875c153f9dfd2a09951f2c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page