Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines. Docs are here.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.7.3.tar.gz (32.6 kB view details)

Uploaded Source

Built Distributions

imops-0.7.3-cp310-cp310-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.7.3-cp310-cp310-win32.whl (2.2 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.7.3-cp310-cp310-musllinux_1_1_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.7.3-cp310-cp310-musllinux_1_1_i686.whl (7.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.7.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (7.1 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.7.3-cp310-cp310-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.7.3-cp39-cp39-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.7.3-cp39-cp39-win32.whl (2.2 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.7.3-cp39-cp39-musllinux_1_1_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.7.3-cp39-cp39-musllinux_1_1_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.7.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (7.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.7.3-cp39-cp39-macosx_10_9_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.7.3-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.7.3-cp38-cp38-win32.whl (2.2 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.7.3-cp38-cp38-musllinux_1_1_x86_64.whl (7.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.7.3-cp38-cp38-musllinux_1_1_i686.whl (7.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.7.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.7.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (7.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.7.3-cp38-cp38-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.7.3-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.7.3-cp37-cp37m-win32.whl (2.2 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.7.3-cp37-cp37m-musllinux_1_1_x86_64.whl (7.1 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.7.3-cp37-cp37m-musllinux_1_1_i686.whl (6.7 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.7.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.7.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (6.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.7.3-cp37-cp37m-macosx_10_9_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.7.3-cp36-cp36m-win_amd64.whl (980.4 kB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.7.3-cp36-cp36m-win32.whl (791.1 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.7.3-cp36-cp36m-musllinux_1_1_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.7.3-cp36-cp36m-musllinux_1_1_i686.whl (5.3 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.7.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (5.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.7.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (5.3 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.7.3-cp36-cp36m-macosx_10_9_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.7.3.tar.gz.

File metadata

  • Download URL: imops-0.7.3.tar.gz
  • Upload date:
  • Size: 32.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3.tar.gz
Algorithm Hash digest
SHA256 3c5daf380ca6c8250021a883e5f77ad4e30ac7f9e1d7e0f958a6838782e52142
MD5 2219d780bd1168a89fd541f4e372a49a
BLAKE2b-256 c56e2cc67454f9c0e28e0fb76d46364a0db7d787e33a52b62f655f8e28392696

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7c38ff3d7ed8cea9811105e0357393cc25ae9a74231fa44c65fc51aef34e8a3d
MD5 ac670a4d846db0620c0a25d4152e5fd7
BLAKE2b-256 bb1459b593274a0f627c243be5b994a29879ead968a5d2541e4b5249ba63846f

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.7.3-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 a182d533d537c58137afaf2314786a9001f6d9099703d4729e754b0cf4e50e5b
MD5 012697ecf344c218d4e6a00081fc8da6
BLAKE2b-256 674dd1551e07977d09c3c5c93f1f2155d1dc876c1e4033ca789952632d09c815

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5768f5486fe2a9443d0e8c5fa4bb3dc19111ab845113e4d19e3e14e571052421
MD5 84f899012c8846e93e34d79ac9c7f642
BLAKE2b-256 7f50d0f98d80dc3ff392a6c58ca07c103090c08cd12bc75c1f7f9dbcf4f95b3d

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cbd4b6ba8405c3f6f9e6b51503a533f9c3a102a307f4aee39ea334fd9ba2c67e
MD5 54261796d390a90ea594a78fdfa3990a
BLAKE2b-256 cf1ce5b9209c951e7ea2395f7f883931b5216d72ff01fb900d97dbd0aa247dfc

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7d79388b5ad1dd521cf0d2ee9aa7849bae87436c42647038def8c4db905cfba
MD5 6530b41f337d03b5c604749af983cf30
BLAKE2b-256 bbcf51d8719079afcea134f668da132c4a0fb4c9f279e33f38935f5efba6b1e7

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 477c421f9353163386d1e21ac830435e05e736cab995cba80acfd518ca0b4e89
MD5 222d4a9ed139a9bacfffd7d7ae428680
BLAKE2b-256 105f98d6d5eeff17a0f3ef048ddbc55c772d5ac77a2b9436b7e0078a82a02a38

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a73b28e3ba1742a5182e7af0d0828b3baee661748fe0acb5ce6acb4b3bd17059
MD5 29db6d848d449eb318b2c77dcd7ef1a5
BLAKE2b-256 b21b45509c379694267c2422cf63f9d16279116d6f0bdb639f6eaf68e26443a7

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 23d7318084765b671420b075586d05405f4e8555931a9bf0ef411ab5e7a298fe
MD5 5b20c401001b5eaa051baf92f4cf9ea2
BLAKE2b-256 f32a3621b927c48a09a3c7cde9c7f5f7b40d40ff4921efd6a36c444386730fab

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.7.3-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 71ae955cacd16124c3f2156b5679f8421e22da6a47f28cd923cd6592fa597e15
MD5 3876b1f55092e6fa25f0bb8dc8117f46
BLAKE2b-256 60da37e4dc1dffe4d40fe6d73de6d9f8a62525c0c07fdc16bed2b27c96486499

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 39896c602c009014a9a80c7b189367ec7e95455632d81bd2255153d4d9f47f1c
MD5 46f101460ed74adca49c51a1d81e3154
BLAKE2b-256 6944599a5f711333c9716383b49c1899a334816451f6c85c74d872f604529dc5

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 4fd30ba309faf83c2e3eb54e2134504191b94aab720a7e8845de6535738ac346
MD5 5e860aeefdcee231f1710e81cfa89d79
BLAKE2b-256 2a68503bf13d61b3516dc690f5be03c4ca652e1cbe22d426f267f1592cc2bcd0

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d88178f5ffa8f8f817715bdc6abee9a604d58e352edeb7faba48e16a37f90ba4
MD5 3f536ead0644c368fca3f4f6f4290f66
BLAKE2b-256 86b412470263320ca5b192889ae137e9fef8923fc99b1ed8bf9a76bc0393a940

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a6625ae76dafc27461993bc6cb4a4e4e533c0d523e1061868255118744e3c74
MD5 033fc4e6a4e7e260c04382cf96a0f740
BLAKE2b-256 950d2916438f9611276e196d7c727def8d28c8d1b9c6213efbf8a7bdf68ee258

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6e0f142a6cd6ca8ce909afb7045a5e26c6bef74ec12430f258a9bb99ef93a4fb
MD5 f9199cab188bde1861f6882cebf470fe
BLAKE2b-256 746156b43d42e4c0fe2f8e8f4901d1c97f7742489f0952286474a2cc2e6e05ff

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a0193fdb32afc68be7392295933a33d9cf0d4250ace2c21357060c95cc98897c
MD5 5d86441d69eece3a88d02f7d8e878e4e
BLAKE2b-256 7ebfc3501f4f0910deb9fbe6d93e8d9aef8bc4ee449dfd04cd4412dcacd51e13

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.7.3-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 67a1f725b1080666903c2a4deb02bf9f69c682fce0f835c37a0e256d7aaf6992
MD5 0c29f562edc540b5c83d4adfcb71215a
BLAKE2b-256 abe6c20e3ea6d53ceac3bd2926c50e48104490a35395584e21119acea45a017f

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1b0b86be065577820cfa8bc9ef4efc1a2a7927a7b778edae66d94e448175c848
MD5 c97fb330cfc5f3f8e113e28e9f306393
BLAKE2b-256 0e672cc4085cea5360ca3facd46164312fe737e17db9a374f6e58074300a0fa1

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 07f2b081c7579bd9f671db427a8dae1580bfcfb4dcd3f8b4b36116b7281c63ca
MD5 2ece51065b64bb1d06a4627580c802fc
BLAKE2b-256 e996fd630373b3d03b82056079058b433ec3ef09d493b359fde764c831749609

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d44d1a9e845ae50c7fd16fc06016d12d4185ab360e8ce1b16691aca4da89e40f
MD5 a65570fec9ce4621d51b10cb63bf268f
BLAKE2b-256 22dc016736154802e400684069b44e556b5c5d586f4999be3d18e7912bd47fcd

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a83d50d87481444b9387ddb5c5da7a99e97d4a5d2ad1d235e0c49c7451f0a23f
MD5 424bb3f85dbc0b03daaddeb4b3c556d4
BLAKE2b-256 8862ec8da940e7c5142a940551f0015c5de538f087718808bb56f402f8b7bee4

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0d52a5f4d9c52a52719ba3326e7b95d1e103d50442602ff889d233060d376f49
MD5 8206c20d066d3079f2530885262d2dbc
BLAKE2b-256 83d14008d595b2578a45dbf62a97758ab8f7698a19e770114774f956ecbf6a16

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 39101be13d234cad283d5c77ac9284967bfa78e9fae4ab489c5fe5306987a472
MD5 add24b21ccfe34448ac19e5ed4e555c3
BLAKE2b-256 d33a6885f5624a94c46e552f2774971a8c18a4296cad89c876a4f7765ae0766b

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.7.3-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 16fdfdf7d0bf6962fb0954417dbe58091e4e219266162da60aa6f028c1699968
MD5 3fd7d01ff11f1f7711a787016b183f81
BLAKE2b-256 7c08770dd749972d77e2ea644c1b22a08e58e7316077ec84873f1bd50366e127

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0189b708bf3ca1fb29152d419f3c395f203fd1b5a51c9671f8efb98c62ad51f4
MD5 2bb5643b12ab07279990ffc6b301eee2
BLAKE2b-256 3f690ba92ba49563eb5bf99ae3769e50eccf95c5456e946585069b39f511b80c

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 d41efe5def76ddec99b893752585928718f5f7db38148cdd2b8a445a4d730b3f
MD5 393f60a474862f9d02841787de4727b1
BLAKE2b-256 642478d2f06c365a1d14c2df3bbc07277f39dfc2d8d2ae46f317a76c1033b2a3

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9e24269bb2ed3d89fedd03d9f2adb1a51cf40596bd04628968b45f287b971b23
MD5 47b054207e68da607bf96905d32408c2
BLAKE2b-256 fabad08eb03434a1a22c40407cb9c96cd32cc592ce8372633e6fd18fd55faced

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e5e02d8dadfcfbe36bb080f8db23caecf1bd874f29917320680d1fe201dcda00
MD5 69ba2062639ae4769b41bd518f699bf5
BLAKE2b-256 b35f0210cb9338d0c6d613916fa6c450ee326bf2bc0a2aa2fdf9a8d80555a8bf

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d32021b7613fcd708d35acba5a6efdee329b0a5123cfe6e6aede94ea0f7e0499
MD5 90763521ce5a92d4d9f1acfd2064fd58
BLAKE2b-256 663d654d463aa6ee59d42bc5790e3d6d95b0bd3def23911db14fb2984af61642

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.7.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 980.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 0c20ebbef5153e8a06ba961d516af97195a893a3828e345a7e68a45516aa538f
MD5 08d30a82f80507c17556c249b893fba5
BLAKE2b-256 f89570b024e4d22a68b9edb6f1898d8697d9adb69bbcf6b624f65d57f4ca8e0e

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.7.3-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 791.1 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.7.3-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 5ed2eeb3ebcd0937812d217d03210f51f6e495d4bb35594024ba62ea18de9664
MD5 bfe4877e3b4a59427005e00b8ade20a9
BLAKE2b-256 251c9558e82a46adc359739f282b9c27e1954b937d449246f886d8f6b421e0bd

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 dae18930401acf5682f3b193d36c31fe5a19dec3c37e41e18e4dfae696ff4e11
MD5 9192abf2d6a7f9c60fc3ae4d218d84d0
BLAKE2b-256 099e93a8c41faebb24b93a8aef16b3c1aab6a9ccd5781b566cac61a64eaa3998

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 79c99a8fd90c41bfd5f6483ffe1a3900f3174cc63fdd748754330b526345cc40
MD5 151c29d59f2a9348a013a348e31a5763
BLAKE2b-256 a326794c26d535c7067ae215c076df6ec1dd77ab87089923f7a0623dc995182c

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b3f027484e046dea767873ec888e206f49ba22729987cd036db0dabc89f9fc7
MD5 337e6d48ce326834b84a3739972c178e
BLAKE2b-256 c5e4801dc82de716c91097e23b36b12474fd32cf78198c31a9280250845bfe4c

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7e96fb1154f6b0971a0dd0a74a1d033ea2f490c21dd08f49614e8bc899d14189
MD5 d6af439f52cef7f01dcede28d103fdf2
BLAKE2b-256 8c5a44e9f1addc9033d8f98ea6413eaf6ee745ed7bc5e19b6d427c52e6db3183

See more details on using hashes here.

File details

Details for the file imops-0.7.3-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.7.3-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f645c93b2f14c60879a617acb437cbc565d2cfefefedd0abff36651e55f849ec
MD5 52868cfe5620ead3323a9f8682dac17f
BLAKE2b-256 9ea93c9a5ec40d26591ad01b45a0f3e1d21a9e04acc354c4ae2581c8f60344d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page