Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines. Docs are here.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.8.0.tar.gz (36.7 kB view details)

Uploaded Source

Built Distributions

imops-0.8.0-cp310-cp310-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.8.0-cp310-cp310-win32.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.8.0-cp310-cp310-musllinux_1_1_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.8.0-cp310-cp310-musllinux_1_1_i686.whl (8.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.8.0-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.8.0-cp39-cp39-win32.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.8.0-cp39-cp39-musllinux_1_1_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.8.0-cp39-cp39-musllinux_1_1_i686.whl (8.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.8.0-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.8.0-cp38-cp38-win32.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.8.0-cp38-cp38-musllinux_1_1_x86_64.whl (9.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.8.0-cp38-cp38-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (9.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.8.0-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.8.0-cp37-cp37m-win32.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.8.0-cp37-cp37m-musllinux_1_1_i686.whl (8.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (8.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.8.0-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.8.0-cp36-cp36m-win32.whl (965.0 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.8.0-cp36-cp36m-musllinux_1_1_i686.whl (6.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (6.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.8.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.8.0.tar.gz.

File metadata

  • Download URL: imops-0.8.0.tar.gz
  • Upload date:
  • Size: 36.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0.tar.gz
Algorithm Hash digest
SHA256 b0adb0aead11c3d878b1bfca1218d3a3e8d78267da7f173ca4e957aea175361b
MD5 251c6e32419e9a7ca1bb7e1755465ed9
BLAKE2b-256 2b9ecd09ca04db5950cdb2fc82e5da4c2ec964e7e7f2842a814ec943030f356f

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7e00c28c7bcd82bad8f23cf3e616351293110b16a946c53d81171b31d8154a21
MD5 1b5b11b5c7ab4da0bd1e419bba6c21c6
BLAKE2b-256 b0b9a2bd10d9968235bce67185dbb1525339e2911c0799a34cc26c8bfdfaef71

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.8.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 d7b2d520e16d8da7810a697abe9e5d03d587693196444c953ab4232b968189e3
MD5 236fbae455e3428e2d85172a44d04f3d
BLAKE2b-256 9a16e80c6283ad06c616a64d5c71607226ca1f3d145d1cedf9e75cbcb9f59bd0

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ea83285dcfb4c5dc9800a3b0f115d2073d1ad05f8f93c62d131d4bcb40a0fc42
MD5 1cd65ea099b3431744f28142708d7a4e
BLAKE2b-256 2a58a89dc8ce6542968a1bf53ad68c5508401dfa087d2c9e460042146a45c674

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 adf482be92db0e4b83a6f1d198000dde944c0e7b9557e22f03ce852a7cb68df5
MD5 d745485c50fbace3bc421677b437c318
BLAKE2b-256 16a02cd70039dacc53608ed5bcdbfc8afec5d73a71293d54d813cf8718c4a04c

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 40cfa596562a5a5aed97eb723394b21d3ae29b7dc5632ddba6c2364516a7bcb0
MD5 432a888b63e3c288380317d72f0ea6a1
BLAKE2b-256 5e16f9aaa5d52f415d1d6594593e4ea4356f0562b2ba0b190507999d91d3a5b5

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3b7d253f01c4bd303f2e657de6e85b7a88d0881c0adc521faafd2fad09192c52
MD5 dfed5eb807919a5d417791ec62b4078f
BLAKE2b-256 e06349b02175a635af4b751eab64204232062179aa154862cedc88d4bb0c79d3

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7a92c2b5cbabf9dfa74c35260f4dfffa9cfa0fdb3377cfa7fa1b3a372a4d97d1
MD5 b4994a9f5a4544acb7c7b8c55a2cc9ce
BLAKE2b-256 8e2a20edbeabe11eee8fb72f7eef7754b831afc1d1f56ad7df9f46b932bd8318

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 59cff46cd095f0201f65867c4307a6cfcbea07697104f2527ef3a17f12ba3c78
MD5 912cf1c89c57adb6980cebb1209ee665
BLAKE2b-256 fb6f4c243cad91ca0929d0ed53e5c428eebc518ddc3b701c86d6328bb42a3932

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.8.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 a4457c4fbf0b14d5b6c3bcf5e21c3d3bd7124a9a0fa849c060a6a6aa606cb64f
MD5 696860187ae9a4d3b404020ddd593c71
BLAKE2b-256 b26a86edaa99bd1ab93f831a81f203d40dff3f83a32f2d8b782bb478e900e9f0

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a3f394de9da0e5b35cd99d094b78976687ac27016143bdbe67ba95254a5b42fb
MD5 01205fc576691c57a76de2516e340431
BLAKE2b-256 9b36d9ef4058b2b48fde52dfeeb0a86628f099587c3ea2547b41006a9cc0c582

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f630c08a86822fd6bc660a3eadc0a78eb645a1f3746d10203962d1ae0179152f
MD5 607cc78ba589f305b88b4b76c5f4d354
BLAKE2b-256 93b4ad0f0bcec1f268f01fa22fadf8055dffe19edf3d9fab7d310636919b365f

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eb51f5d8f92474e94428b19e2eaa980ac30f8a89d174fe40b80bb9687a43ddd9
MD5 40c5aac5788d1f078e88b1f8f7fe45e5
BLAKE2b-256 8c9d2fa8cdbb2776990a4e15c610f636310e02158180e216000db5ac5e757382

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3d65df4c799b8babb40f8b15e3b2ca14bb18640c11aac2a62e204f5f6577d6b4
MD5 bafd2c711ef998a0603aac166e50f9fe
BLAKE2b-256 f3deefcf652f431cecfe4782c39e1a160e599d94d7a93402265a243c87cdc9cf

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 472555273d42b9f7b9a0947c0cc217256eddcb865a0c1a912c6c15d603e75290
MD5 5b7949644beebfade7e47ad92570627a
BLAKE2b-256 0f5b23efbd61cb3ccc655375356c79d18bb6b78da8734bcfe04b2483c9badb4f

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2ef1adaf5620f223807a0038cbd9fd527cd39e83b8097a04ad389cc5f882fa18
MD5 cc6735e2829fbc20aa2ed4699e653dda
BLAKE2b-256 13b6f8fe95a096692a8e5815fc3091c18e16f117dc11a061a6feed86ee9d1ecd

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.8.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9378335b2fe8fc49f128525ab0739a86e347a3c48de0037cca56da560d027324
MD5 101a3d5ad055b947ecfec5d346e7910e
BLAKE2b-256 f1e588f7771f449dc9c9e05dd5ef5dac70b55fc58e99ff1298ea03c710b5301a

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a807ad484f5cb36d59b858c937638e1f14d826a7e0eb01a18daaa15c5b7d9a7c
MD5 e7cd1bf06133c3be5491b9adf3fead00
BLAKE2b-256 bec458a10ac0ded2dd547eb2327a74c72d8bc30977f0e47ba2d1e74875a28b8a

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 f8a494ae20543775c9fb0f2f4aaad7f6e90f866ccceb70def463633428a9b2e7
MD5 5f1ca78dbfd229bab2e7305f6f882a83
BLAKE2b-256 6e8f4c013d74fa18a70cd72321af97d166f8d21bbb1badcbb9e54464d816ecb0

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2baa1996583d5038560dcad215a3c78ce9ff468d4e5a372094573df084a39d3c
MD5 b1167cb59b3e4373da3aacccafb7175a
BLAKE2b-256 4c093fb1b973d94e0d49bbdcd41167d69ca1764403284093a20ef599e82e7cd0

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 84aba08cd02048dbd8c29de803a87b86486621268287cc417052f4a271ca2c55
MD5 f5ff93f5d5908a0d73b7c12eea4e9cee
BLAKE2b-256 4c78c254bec595b80f3a407640d73a24ca250f73f668765abd0a0c5bccc5a5f9

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e34f91620f66231465d98fda9c40108139fc3cba26e319a4cc8e249e844057c2
MD5 d3479b6802fc457e159d79a724f39133
BLAKE2b-256 7e40bd73bfdde62d59f95594e6631d9fe6d506df9a492bb4c03bfb021cde1246

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fcf99276292d75e85e24f6dcfd37a730cb2b3ee5e1dcc9cc887d7c60c94d0a20
MD5 6d87ba5d73c153148d779acae1819ba3
BLAKE2b-256 66cf8b3fc1f55860210ce0e34fb4153211d96ff1034434f81099ff31fe575061

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.8.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 3fe18071c5be95b1da63e93ad1ce8f907a2aba8628f196fb30785b9cf42f0833
MD5 e392f0981bf6ac28ef60080052bbf4a1
BLAKE2b-256 14a2137b0b9020f0822080bf52987216f6b8dd97e09df9cdb92160e1ac7b44ad

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 37bc924096dbf9b0a989b0dbe0b1fcef74de07f1c4ed460cf64db328f7fa6983
MD5 ae88896dbe9fa3d07d98351b32c0cf6d
BLAKE2b-256 091281aa6d977caae89e272cc1b2b21ba3e1fb01e3c2fc570f9774f36d108ebe

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 66640bf5a0cd6ec537451ba9e64e1aba6be0528c2ba20d86f789a7a027c5dab7
MD5 9ba0dc58f42aeb75aa82faefb14bd9c0
BLAKE2b-256 bc0eb133091ba95d8527eff7400343e6d1b849dc928d2b1e8dec4daa285abaed

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e078abf96de902489f5a70093df9caa9e0debc23b0edc6fafecd5c5a94e0184b
MD5 f565cdbe52a71e3325c4a1bbb4c0e43e
BLAKE2b-256 48fa8598fe79c3fc5362532b6ac153cefe73f70ca89862a5952734b742c33f72

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0b34b4300a7e27f652070f63660dad86607fc96f79c5c3cbcedc316fb25e133b
MD5 e29fe7b507ef992235a10ce5de15ec29
BLAKE2b-256 e6263b364e75d86716800ff91d67a87e40e0602882dc4e44db795d666f1899fe

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 568bb39a1b5d5d8f384b83de44e3febd47245049498a2be377a5a9bda5d98d8f
MD5 fc80f54d130549987e00431e317f1b76
BLAKE2b-256 2c4050c4860d3b14ac15bf6beab6c68e9472739cdb20523c97be6f78be5f7df4

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 17f5a1a9a453a847945243fa80e5f2bd22d0bfe5993a4d133aaadb3af4aaca69
MD5 7f3d55215defbc45d6998a5ffd7dee79
BLAKE2b-256 1c467a5c0500709ad809a6b944dae2f7aa6110709ac2ead11917dd3739289294

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.8.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 965.0 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for imops-0.8.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3012417253088f2e8f134529117be8f6c72e820f2005c5a2ea085a087a0d0f9d
MD5 f05f4fa1bc4d50de9ef6cada2319dd0c
BLAKE2b-256 3bb9b5660281f61f40181508f2b58105926e4d2ad2141f92cdd0804da62b3838

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 1026769133f5046d8e8503172a2a0437b88f93ad73fa214411adbf1c5c3a1967
MD5 140851ab422dc4a4fe548535c3860d69
BLAKE2b-256 d24eabb5fd83d192c646479bb15546eed411e0bc81a598ea02dfdd96fb3f0b9a

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 b7fa9a11cbf251ee95c2caf055650a1755a0a93bc8c229dca8b93f8c102dd463
MD5 7d54f001334b7f4d7cc505f6b40c89d8
BLAKE2b-256 7dff928efdab7016fa7b5d695d593fd57e96f5c0827ee41901e14a4a9c849d21

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 740625a0c92393303e164b0a949bd3265a1b31a743b972cb8bc4afc0fc1d8208
MD5 05451e5af4ca72c2d6673b8432a0d649
BLAKE2b-256 d609804dacace676b25845af400fc12d0ea7b1904199e105737d3cd07b6965c1

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 62d5b1698c16940f02be4e0b4651d9ef98fcf3643ba589d9ea109fe07830e58d
MD5 00b9b1d8ecc7a2374328c5448864a03c
BLAKE2b-256 a3ec4be6dfe4b1e03641df1b53156696b34b443296eab461dbb2a134b1dfc21a

See more details on using hashes here.

File details

Details for the file imops-0.8.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8bb1efb30b52610f853689075852d65af11f16422126d3f66e85e40d63eca04a
MD5 2922371467eadfa2795eb4ab314631d5
BLAKE2b-256 90dc0c82af96b54e5b028e69843b617676965d036d95e638418878e504972623

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page