Skip to main content

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines

Project description

codecov pypi License PyPI - Downloads

Imops

Efficient parallelizable algorithms for multidimensional arrays to speed up your data pipelines. Docs are here.

Install

pip install imops  # default install with Cython backend
pip install imops[numba]  # additionally install Numba backend

Features

Fast Radon transform

from imops import radon, inverse_radon

Fast linear/bilinear/trilinear zoom

from imops import zoom, zoom_to_shape

# fast zoom with optional fallback to scipy's implementation
y = zoom(x, 2, axis=[0, 1])
# a handy function to zoom the array to a given shape 
# without the need to compute the scale factor
z = zoom_to_shape(x, (4, 120, 67))

Works faster only for ndim<=3, dtype=float32 or float64, output=None, order=1, mode='constant', grid_mode=False

Fast 1d linear interpolation

from imops import interp1d  # same as `scipy.interpolate.interp1d`

Works faster only for ndim<=3, dtype=float32 or float64, order=1 or 'linear'

Fast binary morphology

from imops import binary_dilation, binary_erosion, binary_opening, binary_closing

These functions mimic scikit-image counterparts

Padding

from imops import pad, pad_to_shape

y = pad(x, 10, axis=[0, 1])
# `ratio` controls how much padding is applied to left side:
# 0 - pad from right
# 1 - pad from left
# 0.5 - distribute the padding equally
z = pad_to_shape(x, (4, 120, 67), ratio=0.25)

Cropping

from imops import crop_to_shape

# `ratio` controls the position of the crop
# 0 - crop from right
# 1 - crop from left
# 0.5 - crop from the middle
z = crop_to_shape(x, (4, 120, 67), ratio=0.25)

Labeling

from imops import label

# same as `skimage.measure.label`
labeled, num_components = label(x, background=1, return_num=True)

Backends

For zoom, zoom_to_shape, interp1d, radon, inverse_radon you can specify which backend to use. Backend can be specified by a string or by an instance of Backend class. The latter allows you to customize some backend options:

from imops import Cython, Numba, Scipy, zoom

y = zoom(x, 2, backend='Cython')
y = zoom(x, 2, backend=Cython(fast=False))  # same as previous
y = zoom(x, 2, backend=Cython(fast=True))  # -ffast-math compiled cython backend
y = zoom(x, 2, backend=Scipy())  # use scipy original implementation
y = zoom(x, 2, backend='Numba')
y = zoom(x, 2, backend=Numba(parallel=True, nogil=True, cache=True))  # same as previous

Also backend can be specified globally or locally:

from imops import imops_backend, set_backend, zoom

set_backend('Numba')  # sets Numba as default backend
with imops_backend('Cython'):  # sets Cython backend via context manager
    zoom(x, 2)

Note that for Numba backend setting num_threads argument has no effect for now and you should use NUMBA_NUM_THREADS environment variable. Available backends:

Scipy Cython Numba
zoom
zoom_to_shape
interp1d
radon
inverse_radon
binary_dilation
binary_erosion
binary_closing
binary_opening

Acknowledgements

Some parts of our code for radon/inverse radon transform as well as the code for linear interpolation are inspired by the implementations from scikit-image and scipy. Also we used fastremap and cc3d out of the box.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imops-0.8.1.tar.gz (36.7 kB view details)

Uploaded Source

Built Distributions

imops-0.8.1-cp311-cp311-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

imops-0.8.1-cp311-cp311-win32.whl (2.7 MB view details)

Uploaded CPython 3.11 Windows x86

imops-0.8.1-cp311-cp311-musllinux_1_1_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

imops-0.8.1-cp311-cp311-musllinux_1_1_i686.whl (9.1 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ i686

imops-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

imops-0.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (9.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

imops-0.8.1-cp311-cp311-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

imops-0.8.1-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

imops-0.8.1-cp310-cp310-win32.whl (2.7 MB view details)

Uploaded CPython 3.10 Windows x86

imops-0.8.1-cp310-cp310-musllinux_1_1_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

imops-0.8.1-cp310-cp310-musllinux_1_1_i686.whl (8.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ i686

imops-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.2 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

imops-0.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (8.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

imops-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

imops-0.8.1-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

imops-0.8.1-cp39-cp39-win32.whl (2.7 MB view details)

Uploaded CPython 3.9 Windows x86

imops-0.8.1-cp39-cp39-musllinux_1_1_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

imops-0.8.1-cp39-cp39-musllinux_1_1_i686.whl (8.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ i686

imops-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

imops-0.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (8.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

imops-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

imops-0.8.1-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

imops-0.8.1-cp38-cp38-win32.whl (2.7 MB view details)

Uploaded CPython 3.8 Windows x86

imops-0.8.1-cp38-cp38-musllinux_1_1_x86_64.whl (9.8 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

imops-0.8.1-cp38-cp38-musllinux_1_1_i686.whl (9.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ i686

imops-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (9.3 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

imops-0.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (9.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

imops-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl (3.6 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

imops-0.8.1-cp37-cp37m-win_amd64.whl (2.8 MB view details)

Uploaded CPython 3.7m Windows x86-64

imops-0.8.1-cp37-cp37m-win32.whl (2.7 MB view details)

Uploaded CPython 3.7m Windows x86

imops-0.8.1-cp37-cp37m-musllinux_1_1_x86_64.whl (8.8 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

imops-0.8.1-cp37-cp37m-musllinux_1_1_i686.whl (8.3 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ i686

imops-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (8.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

imops-0.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (8.3 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

imops-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

imops-0.8.1-cp36-cp36m-win_amd64.whl (1.2 MB view details)

Uploaded CPython 3.6m Windows x86-64

imops-0.8.1-cp36-cp36m-win32.whl (964.7 kB view details)

Uploaded CPython 3.6m Windows x86

imops-0.8.1-cp36-cp36m-musllinux_1_1_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

imops-0.8.1-cp36-cp36m-musllinux_1_1_i686.whl (6.6 MB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ i686

imops-0.8.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.8 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

imops-0.8.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (6.6 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

imops-0.8.1-cp36-cp36m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file imops-0.8.1.tar.gz.

File metadata

  • Download URL: imops-0.8.1.tar.gz
  • Upload date:
  • Size: 36.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1.tar.gz
Algorithm Hash digest
SHA256 7f5659d2fcd5d128d2c14f24c336dd9ba239f9eaece107eba84b1c60e31f3735
MD5 7a26477b893bb2a6fc706bcdae82e7c8
BLAKE2b-256 849b1db64a274e222846ce0e92d31d1155e1fb46bb8eb14d46cc6647bc5c720b

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ecff7f9ffd0d6de81ab2eba32703075d314497f6a8e26ab6e1d7f702ba70d659
MD5 d9f73f7ddaf27b30353e19d0e9f68060
BLAKE2b-256 c391f20a095dddf80f3331e5f7782cb285346da0e527b4a2705b2143fb25c0c0

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: imops-0.8.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e824c46da6ee495b2c8a02c1f2fec3ffd323c1a45d52905202d1eeec36c669eb
MD5 5190c5ad225acfb3843bc18dcff8f3d8
BLAKE2b-256 089b62b14ccd52c5227fcdfe85ce4945b5a484055869435692142f629e387e3c

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 54d67411c4bab85d1b57cfa4062b90813059f2fc7af801be3ce6597acd0582c6
MD5 861922f4aa599c62875979a369ea2f16
BLAKE2b-256 076b0200d138b7babee9924eba7a766783ab5db0207ede2bb6b156681fed983c

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp311-cp311-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp311-cp311-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 6d5b33e8f8aa9b153368d14bd85d4f9aa65fc51d76ddc387cd670e713ff0542a
MD5 5afdf19f7f115ab8ff882ac754e36215
BLAKE2b-256 a638c9c9e66532e37638c9313f5a465dee39675b7e0854aaef5808ae1d19a8ae

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c07febcc85bf6cd1c626b3d496a8bdeb5a9c9815dc43b0816de6f7246cc077c
MD5 7928a81286cb2020d472506b5f67f566
BLAKE2b-256 6ca25b572706ae122c7ff78bdbd3f8c84fe0af5ae990f03963b01b376741d632

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4cbed453d6f8798b2f98b5afa12f5bc3387c65a93e0a9add973f5ac45356706f
MD5 3dd6ba51949e5e0a090458c168642c46
BLAKE2b-256 9a6c80aa09d86831fc530ffb67873bba0393e602f7270fc94d4c9057df09e3af

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8a28b376949d161e85c2577c863996199766551762dec0bbe784c90e52788a49
MD5 d7269d31fca277a3f6e1e24afcbe64f4
BLAKE2b-256 1b51b73c0204d7c72c243e592900faa2429747a0c53d0872a0ce16f43599498b

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2622dae9b91b2c16b9e968065bc94c23973cb6abb16f7ecacfb09b1acdef86f7
MD5 fa602d54fc7fa69436212def5f842b74
BLAKE2b-256 711a2ea26a4b4a09d7c8c68265f1012f5f493b47c45d992c42c979dcafde934d

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: imops-0.8.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1885c70c4da70732e2e7317a4fcfff75fc9f7fd791c1d00f7a0c25804d0a239c
MD5 d8909c712aa6336645d60e2268c1549e
BLAKE2b-256 168c44d488586e59d52abae0b6731b4d0547bb000934124937000ba9b09868ea

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 524fc7ed675d19d442307ea7070cfcc41f7c88a6867427c5d5b8042d429ad737
MD5 6a12b54685b4ba9e748e553d8491a58a
BLAKE2b-256 72c47b3d51680f0fdd1d362cddbc2e0ba022ec0d055bcdf98ff0f64eb034f23c

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 9eff778b9db4c218d150df042c18985f969bf53ffea1198b5f242f271ef4ac71
MD5 9ba4b280a59946fd4eedea7e8d21381f
BLAKE2b-256 c22b84b80bad8d405d6211b9c24998636adc87ad31af06b8aa615ff4c084d46b

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43df51d9a0c40b1e8d7c6f0caed0e475ecca80b83aacd137d412c70f14fb78ec
MD5 96c7145557f8cb022caeba313a1b9341
BLAKE2b-256 d6fb9c4435311c5e9f1805f4aaaca0d25f5b6fde3dc837cd30ed727670046e76

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 18fa16fcf791bbc5454ecfbeeec752552e22464ca970f3600dd4ca111a31c836
MD5 3aa4d0592f414454da46c555572c0511
BLAKE2b-256 abacfd2f5b623cd289c6a920ad36846a74274138a1bc5460312c387dbaa9dffb

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0657833f7c448cfd2a6c3ad6a6efbbfcb92372a88763887dee8ce0f7b4312ffb
MD5 eea454dc859a1b9c73bcedc36a339a3c
BLAKE2b-256 66bb014b0fee839ee8ce1fe4bf061e62ec1c9b13b51c56d20f1b79ceab677449

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2e63d31667d8192155f9c8728712374b43f7cc284ac8aabd53783abf0abcdf4f
MD5 c0dbff72bc6a04eec57b459ac62ff825
BLAKE2b-256 53bba77b93595dc52e72e1286e61f05a6584bbce52a1d0bfb816a2d1e0fa2822

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: imops-0.8.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e345118e7d1f0541c72d439eb4fa6153a6b7a62b2ec621e29ec672b38b3ccb3c
MD5 ff4bf3374c3ee556aa0cb10155ab849b
BLAKE2b-256 dca6b9d7812dbd7e8268034439bf0f0d987d388bf2534657b3abde7e88cc44bc

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 2ba9bf4cafe9eb1ec2c02d58a83e46a9fe2d4eaebd44f48a555ff2443aab9897
MD5 4ea7fe266aaa9d7e56df6a5029149ef4
BLAKE2b-256 03a0d0b420d7dc6d76a8a699caed641429b26ff4d23ca0c7933f937dceb8c14d

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 2ef049e732253a2b110abc86a8a7bc4249a0878ec12f50b481d5c11f5faa6cdb
MD5 3a5ec4d135b97f52b942b1b33707a961
BLAKE2b-256 67b9224c11d240ad493a70bcd7aed787658985099322d6a751def39a01dc54ba

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fab459fef59d7e5d5ca51d431b2f413602028b3d73f6596c8a39a84b4fc070b3
MD5 51d2275916c8adb1c9dc733333c11e1c
BLAKE2b-256 13cb51cd28142d1941f2f35aaf1f6eef86ee5953fe75de365dd09db4d89b8dbb

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 af71467ee409789ee37d6c741107d11c76a71bf23ffee3e14bf06183fa9eefdb
MD5 5d791061c55e5e61fc1d4401cf586962
BLAKE2b-256 a300cce3271916fbf4cfa46df939bcd114d4445918f9c371b7dfdbb9c9e0d60f

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79919db390e39911e0e1ffaf81d90eb1c2180578c321ad3df84cda2c185667ee
MD5 a42e9f740cd86a3ef94a174b96f55666
BLAKE2b-256 e64b1bfea5b8fd83e74f34bbdf77682e3f90b85487b53b6d30038871c7f60daf

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 58df97a055aa31d524c3530782de9c9a6a59dda8eea03e6c31864293bd1b3348
MD5 1337802e613237adcb25523cbd001d09
BLAKE2b-256 203185ff13c96dc40333bb74ec12490b3ddb9852364962d55ce5cea4086a9605

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: imops-0.8.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f2750e4ab0a8b1c1f69855408e91d9d581a2f956ed83f23d64fac4ff4f702690
MD5 e3143bc77ae44ecd23c7286ebe4c55d1
BLAKE2b-256 c28d231fa255406440d7f4f53ddde1bf3288d0caa10360726bcbf182919f8d19

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 a6ce26a750c30d8ac4ad612b9de6df5b78eb9f8631d432726500fd79115917fd
MD5 c874df541ea842325295a14faeed15fe
BLAKE2b-256 dd62638e83b47af2642f71a1be5c0924ad00f1d291e93ef4411ab532c38600b6

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 cd1a9fcdee1a33e04c8f9bf1c3ac2710c75c83cc16ddf5d826b6a2d492c4ef8d
MD5 07f712926ed9275d85a87e1d7151003e
BLAKE2b-256 0ae294c0c65153a5bc8623385dda5f0c9135162c515fb54b56b228eeaf98f820

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fd98151bc1a5b4c9f3e84100e3b7f7a4918da9ff07f04099ae00cd1e321c5096
MD5 e9d9bdb7179f06ade7c2cd1bffbc2ade
BLAKE2b-256 b6efa6fded6f9a0da048fdc88046d5ea408b9f3142548dba2c77fcf381a750d8

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 af0bd1991f29a0733f7c063c45e7f8d6fd25c86d62b12cb931853ebac9192725
MD5 ba4de94d243adc3f28b8f8cbdd2f5e0c
BLAKE2b-256 3d5fac7842ecd17bde671e3a6c074a84f992919a68834e8c271a83a6333a4012

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 496cf0580d59a34ed218e95e95efd642ae67a21195efb9c8f24dce3ed44d06b3
MD5 47d40e53d10742adbc679dde7e0297a6
BLAKE2b-256 39a0aa55d8037a7b2357fee6ac211ef691b08ee5e499e6dadcc99fae2220ff55

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.8 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 68f822414952630bc9c7242616835a0ab35a73ce9de8319b89e75086a4f6773d
MD5 c9acfed14a4e3580aceab861d8f9fedb
BLAKE2b-256 ef815643d9183caadb5f88bbe088e38d42964c71b84454efd0e648c54e5d16f4

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: imops-0.8.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 1525c1bc7aa7fc946dc9aeccbb8561c9a86fcd9fa7f731ff7cd271e7e5567c9c
MD5 e629cdcbe5b2e3615a77c9318e2bca30
BLAKE2b-256 bd7a026b00f009c7472b3d5b2b2f2510d18b0aaa3cfdb2bea3bc4f62c0d48323

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 e4098f902637b2e5c90f5e7b842410f056981d18f93f5f0d228778e2fc563153
MD5 3476b1855e0a5591c1412ec815a49e01
BLAKE2b-256 9465e558b7965b5400b3a6cf1afda19d7b2f23d2aa39186bde904ed5eb8aa865

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 35e6e7ed0f27ad393a5b824e6578ac39f09c98a529cf421e08beee2800b7d6cf
MD5 cea1893d6a381899345802fb5fe60496
BLAKE2b-256 57b223064156822f329521b5281b5aceb9f37e814578e22d7f4cca6a45c0774e

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c277a57a59e2063a686925f10c7a986fb01c7eeea93e32cb14bb6f39a32f1af
MD5 7b51d0ba997da20c6433030c2205c4c4
BLAKE2b-256 d13d73dde775f424e5589fe5e03fb155f34818d3db0b860914d33262ed25eb63

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b93a55c0dadfc743bec9815eda7caf0994772d149ad830d036aa4bac44d7e3e3
MD5 e110952b1ad7b0beab327ee16afb2d23
BLAKE2b-256 5df50997d99f2ed9a8fbca26035153ebf950868f65371449e327dd65e4c72ed2

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 93a34b4e706d16d5baa3991eba80ff13ca13d3a2577932636280c98f599b51e4
MD5 c7b080127a8e96efca7ba849fa9f934a
BLAKE2b-256 6eb13e636a3e669fa1bfac80958e80461c5f303bd20779371658f2280ff66b53

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: imops-0.8.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a7b50b3f335e5dd3bb4d1828030c134a9e886fb0d3a311983bb0392a26512d76
MD5 e6c0e062e64e27eebd871dcdb6239e19
BLAKE2b-256 e80daa33d1d9d20cd6a8f4c2970630624dd29e3d297eb46bc16622e0684fc025

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: imops-0.8.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 964.7 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.17

File hashes

Hashes for imops-0.8.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 82c4f13b1ac17357f99df47f8aadcfe13ca3979f45f5afbd23cfe2cf439a44e8
MD5 16276ae3d837635fcd2b0cd8823ce062
BLAKE2b-256 a93be6deec758294bf53ccb422b38ea6de3f0e9baa3f19a931c5c92ae9533dc4

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ccbc381c37346f6b7c4fd6bdbde69827c5a71d8db7444d1424a9a09eee469d62
MD5 13aad8fc85b31a450271355b48f384a9
BLAKE2b-256 26782306b9680b0941c0a7f1d15eb4130422bb9db5c6a751b9d0bd5234c07bce

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 283d78fa1368c2edd74ba30e7eccd094476e1b633c7b67b9d9c99f76efc68c7c
MD5 1821872bb33620960cfcdc66f3521d6b
BLAKE2b-256 d5e83f8aa5c4ccd0cf4aa77cbe7531594f94cb07f2067c9fd05ff18a851c4d22

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d37853fd6cfff67c59c749c2e51017d4ca6305af1f03c3ff7a1476b2a12c249f
MD5 c6d27ab53ebbeb451dae739bc24f2614
BLAKE2b-256 861dd9a011301b072749348d4c51b5c9a87a3f656496cd4e6388544b1927681f

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 280dd27aa9121ef70105eca10cfb62a7f8eae6a2b093e78b6b7004342d5f6feb
MD5 3097bbab0fcad988fbad2123a61df44c
BLAKE2b-256 3926b23c9bc5e34a297f6d6a5a296bd2c61c2ae7b05253cc77535482e5767762

See more details on using hashes here.

File details

Details for the file imops-0.8.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for imops-0.8.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b3cec9f16b9225fca5e8af09c26d4b3997349beca583409fddefb483fa7cfc1d
MD5 7e15b1230b85d817ce7b12f329636958
BLAKE2b-256 f03344267e189bdedb719f6dae330bc8e98502d6e52c20d26e7180b6fa88d141

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page