Skip to main content

No project description provided

Project description

Impact Learning

Impact Learning is a new machine learning algoirthm.

Impact learning is a supervised and competitive learning algorithm for inducing classification, linear or polynomial regression knowledge from examples. The primary principle of this method is to learn from a competition which is the impact of independent features; to be more specific it fits curve by the back forces or impacts of features from the intrinsic rate of natural increase (RNI); since every real dataset follows the aptitude of RNI. The input to Impact Learning is a training set of numerical data. To be more prominently, every feature of our life follows the trend of RNI, on the other hand, there are more back forces on which the feature need to be dependent. As a result, the target is impacted by other features of the back forces which can be named for a specific force as “Back Impact on Target (BIT)”. Since the target feature relies on BITs that is why every BIT also depends on the target feature. Basically, the machine learning or statistical learning datasets derive from real sectors of target territories, consequently, they flow the trend of RNI. So it will be a procedure to generate the algorithm (Impact Learning) from the flow of RNI. Furthermore, this method learns from the effect of BITs and in real life, every business sector has good competitors; the impact learning can be used in order to depict the competition among the competitors. In addition, the trained impact learning can be also used for checking multicollinearity or redundancy for feature selection.

-A framework of this algorithm is being developed. Very soon, it will be made open source, if you have captivating to use in your work just email me

Installation:

pip install ImpactLearning

Usage of Regressor:

1. validation with test data

from ImpactLearning import Regressor
import numpy as np
import pandas as pd
dataTrain = pd.read_csv('brainhead_train.csv')
dataTest = pd.read_csv('brainhead_test.csv')
x_train = dataTrain.iloc[:, :-1].values
y_train = dataTrain.iloc[:, 3].values
x_test = dataTest.iloc[:, :-1].values
y_test = dataTest.iloc[:, 3].values

il = Regressor()
il.fit(x_train,y_train, x_test, y_test, loss_function="MAE", optimizer = "GD",)
il.train(epochs=2000, lr=0.5, progress_per=100)

Output:

Epoch: 100, train_loss: 741.998779, test_loss: 659.725098 
Epoch: 200, train_loss: 67.431602, test_loss: 54.413006 
---------------------------------------------------
Epoch: 2000, train_loss: 66.067902, test_loss: 52.447800 
Training Completed

1.1 Get Scores

il.get_scores()

Output

{'max_test_loss': 4119.4272,
 'max_train_loss': 4534.379,
 'min_test_loss': 50.623547,
 'min_train_loss': 66.0679}

2. without validation

from ImpactLearning import Regressor
import numpy as np
import pandas as pd
dataTrain = pd.read_csv('brainhead_train.csv')
dataTest = pd.read_csv('brainhead_test.csv')
x_train = dataTrain.iloc[:, :-1].values
y_train = dataTrain.iloc[:, 3].values
x_test = dataTest.iloc[:, :-1].values
y_test = dataTest.iloc[:, 3].values

il = Regressor()
il.fit(x_train,y_train, loss_function="MAE", optimizer = "GD",)
il.train(epochs=2000, lr=0.5, progress_per=100)

Output:

Epoch: 100, loss: 741.998779 
Epoch: 200, loss: 67.431602 
----------------------
Epoch: 2000, loss: 66.067902 

2.1 Get Scores

il.get_scores()

Output

Loss: 66.067902

3. Prediction

il.predict(x_test[:5])

Output

array([[1303.717 ],
       [1108.7083],
       [1177.2151],
       [1048.9008],
       [1297.9176]], dtype=float32)

4. Coefficients

il.get_coefficients()

Output

{'Bias': array([-38.508266], dtype=float32),
 'Carrying Capacity': 1635.1,
 'RNI': array([-1.0669531], dtype=float32),
 'WeightX': array([[  -0.34179878],
        [   0.5568241 ],
        [-288.52682   ]], dtype=float32),
 'Weighty': array([796.0016], dtype=float32)}

5. Loss Values

il.getLossValues()

Output

[4534.379,
 4418.933,
 4309.73,
 4206.1646,
 4107.7134,
----------]

Usage of Classifier:

1. validation with test data

from ImpactLearning import Classifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris=load_iris()
X=iris.data
y=iris.target
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

il = Classifier()
il.fit(x_train, y_train,x_test, y_test, CCapacity=1, num_classes=3, optimizer="GD", loss_function="CategoricalCrossentropy")
il.train(epochs = 1000, lr=0.001, progress_per=100)

Output:

Epoch: 100, train_loss: 0.484322, test_loss: 0.479262, train_accuracy: 0.683333 test_accuracy: 0.666667
Epoch: 200, train_loss: 0.376250, test_loss: 0.355702, train_accuracy: 0.775000 test_accuracy: 0.800000
----------------------------------------------------
Epoch: 1000, train_loss: 0.055509, test_loss: 0.148505, train_accuracy: 0.975000 test_accuracy: 0.966667
Training Completed

1.1 Get Scores

il.get_scores()

Output

{'max_test_accuracy': 0.96666664,
 'max_test_loss': 2.5907264,
 'max_train_accuracy': 0.98333335,
 'max_train_loss': 2.04851,
 'min_test_accuracy': 0.16666667,
 'min_test_loss': 0.11300503,
 'min_train_accuracy': 0.34166667,
 'min_train_loss': 0.0509217}

2. without validation

from ImpactLearning import Classifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
iris=load_iris()
X=iris.data
y=iris.target
x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.20)

il = Classifier()
il.fit(x_train, y_train,CCapacity=1, num_classes=3, optimizer="GD", loss_function="CategoricalCrossentropy")
il.train(epochs = 1000, lr=0.001, progress_per=100)

Output:

Epoch: 100, loss: 0.456280, train_accuracy: 0.716667 
Epoch: 200, loss: 0.356472, train_accuracy: 0.808333 
-----------------------------------------
Epoch: 1000, loss: 0.100295, train_accuracy: 0.966667 
Training Completed

2.1 Get Scores

il.get_scores()

Output

Accuracy: 0.966667

3. Prediction

il.predict(x_test[:10])

Output

array([1, 2, 0, 1, 2, 0, 2, 1, 0, 1])

4. Coefficients

il.get_coefficients()

Output

{'Bias': array([ 0.00366024,  0.00528361, -0.00894384], dtype=float32),
 'Carrying Capacity': 1.1,
 'RNI': 1.0128337,
 'WeightX': array([[0.90882355, 0.91059417, 1.1805835 ],
        [0.80056006, 0.9750843 , 1.2243568 ],
        [1.2586796 , 1.0555391 , 0.68578094],
        [1.1205307 , 1.1224369 , 0.7570329 ]], dtype=float32),
 'Weighty': 0.98588395}

5. Loss Values

il.getLossValues()

Output

[1.0501021,
 1.0416512,
----------
 0.08514832,
 0.082014434,
 0.07910187]

Loss Functions

FOR Regressor
      1.logcosh 
    2.huber 
    3.MSE 
    4.MAE 
    5.MAPE 
    6.Poisson 
    7.sqr_hinge

FOR Classifier
    1.BinaryCrossentropy
    2.CategoricalCrossentropy
    3.CosineSimilarity
    4.Hinge
    5.CategoricalHinge
    6.Logosh
    7.Poisson
    8.SquaredHinge
    9.KLD

OPTIMIZERS with supported Arguments

use the arguments in fit() method

Adadelta
rho=0.95, epsilon=1e-07

Adagrad
initial_accumulator_value=0.1, epsilon=1e-07

Adam
beta_1=0.9, beta_2=0.999, epsilon=1e-07

Adamax
beta_1=0.9, beta_2=0.999, epsilon=1e-07

Ftrl
learning_rate_power=-0.5, initial_accumulator_value=0.1,
    l1_regularization_strength=0.0, l2_regularization_strength=0.0,
    l2_shrinkage_regularization_strength=0.0

Nadam
beta_1=0.9, beta_2=0.999, epsilon=1e-07

RMSprop
rho=0.9, momentum=0.0, epsilon=1e-07

SGD
momentum=0.0, nesterov=False, name='SGD'

GD
No Args

for more info about the arguments, visit https://www.tensorflow.orgapi_docs/python/tf/keras/optimizers

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

ImpactLearning-1.8-py3-none-any.whl (9.0 kB view details)

Uploaded Python 3

File details

Details for the file ImpactLearning-1.8-py3-none-any.whl.

File metadata

  • Download URL: ImpactLearning-1.8-py3-none-any.whl
  • Upload date:
  • Size: 9.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.4.2 requests/2.21.0 setuptools/42.0.1 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.6.5

File hashes

Hashes for ImpactLearning-1.8-py3-none-any.whl
Algorithm Hash digest
SHA256 2fe1986badedeb14f195a6ed259363f6132c0d61c5485a1880937c88e861c20a
MD5 8a5b2e14cddd100d7875c646120d7faf
BLAKE2b-256 8a2999898ad049464cef1ba608b440725238898d531398a9d0a08e82c7aa632a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page