Skip to main content

Profile your imports' CPU and RAM usage

Project description

import_profile

Want to know how much time and memory each of your Python imports costs?

Find out with import_profile!

Just do:

python3 -m import_profile flask sqlalchemy flask_sqlalchemy pandas numpy

And you will get:

flask sqlalchemy flask_sqlalchemy numpy pandas

                          time  cpu.user  cpu.system  memory.uss  memory.rss
flask             1.579192e-01  0.136667    0.013333    9.899740   13.015625
sqlalchemy        9.448679e-02  0.083333    0.010000    5.097656    5.250000
flask_sqlalchemy  6.937877e-02  0.063333    0.006667    3.441406    3.468750
numpy             1.138294e-01  0.116667    0.086667    7.684896   12.278646
pandas            3.321003e-01  0.290000    0.046667   17.712240   25.085937
*base*           -3.885781e-16  0.053333    0.013333    5.945312   11.634115

cpu.user   = seconds of CPU time spent in this process
cpu.system = seconds of CPU time spent waiting for the OS kernel, such
             as waiting for file I/O to complete
memory.uss = unique set size - memory taken up by process, minus
             shared objects/DLLs (megabytes)
memory.rss = resident set size (megabytes)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

import_profile-0.1.1.tar.gz (4.0 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page