Skip to main content

Python client for the Impala distributed query engine

Project description

# impyla

Python client for HiveServer2 implementations (e.g., Impala, Hive) for
distributed query engines.

For higher-level Impala functionality, including a Pandas-like interface over
distributed data sets, see the [Ibis project][ibis].

### Features

* HiveServer2 compliant; works with Impala and Hive, including nested data

* Fully [DB API 2.0 (PEP 249)][pep249]-compliant Python client (similar to
sqlite or MySQL clients) supporting Python 2.6+ and Python 3.3+.

* Works with Kerberos, LDAP, SSL

* [SQLAlchemy][sqlalchemy] connector

* Converter to [pandas][pandas] `DataFrame`, allowing easy integration into the
Python data stack (including [scikit-learn][sklearn] and
[matplotlib][matplotlib]); but see the [Ibis project][ibis] for a richer
experience

### Dependencies

Required:

* Python 2.6+ or 3.3+

* `six`, `bit_array`

* `thrift` (on Python 2.x) or `thriftpy` (on Python 3.x)

For Hive and/or Kerberos support:

```
pip install thrift_sasl
pip install sasl
```

Optional:

* `pandas` for conversion to `DataFrame` objects; but see the [Ibis project][ibis] instead

* `sqlalchemy` for the SQLAlchemy engine

* `pytest` for running tests; `unittest2` for testing on Python 2.6


### Installation

Install the latest release (`0.13.1`) with `pip`:

```bash
pip install impyla
```

For the latest (dev) version, install directly from the repo:

```bash
pip install git+https://github.com/cloudera/impyla.git
```

or clone the repo:

```bash
git clone https://github.com/cloudera/impyla.git
cd impyla
python setup.py install
```

#### Running the tests

impyla uses the [pytest][pytest] toolchain, and depends on the following
environment variables:

```bash
export IMPYLA_TEST_HOST=your.impalad.com
export IMPYLA_TEST_PORT=21050
export IMPYLA_TEST_AUTH_MECH=NOSASL
```

To run the maximal set of tests, run

```bash
cd path/to/impyla
py.test --connect impyla
```

Leave out the `--connect` option to skip tests for DB API compliance.


### Usage

Impyla implements the [Python DB API v2.0 (PEP 249)][pep249] database interface
(refer to it for API details):

```python
from impala.dbapi import connect
conn = connect(host='my.host.com', port=21050)
cursor = conn.cursor()
cursor.execute('SELECT * FROM mytable LIMIT 100')
print cursor.description # prints the result set's schema
results = cursor.fetchall()
```

The `Cursor` object also exposes the iterator interface, which is buffered
(controlled by `cursor.arraysize`):

```python
cursor.execute('SELECT * FROM mytable LIMIT 100')
for row in cursor:
process(row)
```

You can also get back a pandas DataFrame object

```python
from impala.util import as_pandas
df = as_pandas(cur)
# carry df through scikit-learn, for example
```


[pep249]: http://legacy.python.org/dev/peps/pep-0249/
[pandas]: http://pandas.pydata.org/
[sklearn]: http://scikit-learn.org/
[matplotlib]: http://matplotlib.org/
[madlib]: http://madlib.net/
[madlibport]: https://github.com/bitfort/madlibport
[numba]: http://numba.pydata.org/
[llvm]: http://llvm.org/
[pytest]: http://pytest.org/latest/
[sqlalchemy]: http://www.sqlalchemy.org/
[ibis]: http://www.ibis-project.org/
[python-sasl-cython]: https://github.com/laserson/python-sasl/tree/cython/sasl

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

impyla-0.13.6.tar.gz (135.2 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page