IMS Data Processing Package
Project description
IMS Package Documentation
The IMS package is a python library for processing incoming data into a format that can be used for projects. IMS processing offers a variety of functions to manipulate and analyze data efficiently. Here are the functionalities provided by the package:
1. get_wd_levels(levels)
- Description: Get the working directory with the option of moving up parents.
- Usage:
get_wd_levels(levels)
2. remove_rows(data_frame, num_rows_to_remove)
- Description: Removes a specified number of rows from a pandas DataFrame.
- Usage:
remove_rows(data_frame, num_rows_to_remove)
3. aggregate_daily_to_wc_long(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)
- Description: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week. In the long format.
- Usage:
aggregate_daily_to_wc_long(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)
4. convert_monthly_to_daily(df, date_column)
- Description: Converts monthly data in a DataFrame to daily data by expanding and dividing the numeric values.
- Usage:
convert_monthly_to_daily(df, date_column)
5. plot_two(df1, col1, df2, col2, date_column, same_axis=True)
- Description: Plots specified columns from two different DataFrames using a shared date column. Useful for comparing data.
- Usage:
plot_two(df1, col1, df2, col2, date_column, same_axis=True)
6. remove_nan_rows(df, col_to_remove_rows)
- Description: Removes rows from a DataFrame where the specified column has NaN values.
- Usage:
remove_nan_rows(df, col_to_remove_rows)
7. filter_rows(df, col_to_filter, list_of_filters)
- Description: Filters the DataFrame based on whether the values in a specified column are in a provided list.
- Usage:
filter_rows(df, col_to_filter, list_of_filters)
8. plot_one(df1, col1, date_column)
- Description: Plots a specified column from a DataFrame.
- Usage:
plot_one(df1, col1, date_column)
9. week_of_year_mapping(df, week_col, start_day_str)
- Description: Converts a week column in 'yyyy-Www' or 'yyyy-ww' format to week commencing date.
- Usage:
week_of_year_mapping(df, week_col, start_day_str)
10. exclude_rows(df, col_to_filter, list_of_filters)
- Description: Removes rows from a DataFrame based on whether the values in a specified column are not in a provided list.
- Usage:
exclude_rows(df, col_to_filter, list_of_filters)
11. rename_cols(df, cols_to_rename)
- Description: Renames columns in a pandas DataFrame.
- Usage:
rename_cols(df, cols_to_rename)
12. merge_new_and_old(old_df, old_col, new_df, new_col, cutoff_date, date_col_name='OBS')
- Description: Creates a new DataFrame with two columns: one for dates and one for merged numeric values.
- Usage:
merge_new_and_old(old_df, old_col, new_df, new_col, cutoff_date, date_col_name='OBS')
13. merge_dataframes_on_column(dataframes, common_column='OBS', merge_how='outer')
- Description: Merge a list of DataFrames on a common column.
- Usage:
merge_dataframes_on_column(dataframes, common_column='OBS', merge_how='outer')
14. merge_and_update_dfs(df1, df2, key_column)
- Description: Merges two dataframes on a key column, updates the first dataframe's columns with the second's where available, and returns a dataframe sorted by the key column.
- Usage:
merge_and_update_dfs(df1, df2, key_column)
15. convert_us_to_uk_dates(df, date_col)
- Description: Convert a DataFrame column with mixed date formats to datetime.
- Usage:
convert_us_to_uk_dates(df, date_col)
16. combine_sheets(all_sheets)
- Description: Combines multiple DataFrames from a dictionary into a single DataFrame.
- Usage:
combine_sheets({'Sheet1': df1, 'Sheet2': df2})
17. dynamic_pivot(data_frame, index_col, columns, values_col, fill_value=0)
- Description: Dynamically pivots a DataFrame based on specified columns.
- Usage:
dynamic_pivot(df, 'Date', ['Category1', 'Category2'], ['Value1'])
18. classify_within_column(df, col_name, to_find_dict, default_value = 'other')
- Description: Allows you to map a dictionary of substrings within a column.
- Usage:
classify_within_column(df, 'campaign', {'uk_': 'uk'}, 'other')
19. aggregate_daily_to_wc_wide(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)
- Description: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week. In the wide format.
- Usage:
aggregate_daily_to_wc_wide(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
imsciences-0.5.4.5.tar.gz
(11.2 kB
view hashes)
Built Distribution
Close
Hashes for imsciences-0.5.4.5-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3fe04795d32f2c72844299a4d184bd87fde5b85a5e9e4820178af2fc8a9046f9 |
|
MD5 | e6fc92317c9dec325433febdca3066fa |
|
BLAKE2b-256 | b636480edf9829e3b3e8fcf287d496d6fe8102bf35bca742d1baaac9c40a5a1b |