Skip to main content

IMS Data Processing Package

Project description

IMS Package Documentation

The IMS package is a python library for processing incoming data into a format that can be used for projects. IMS processing offers a variety of functions to manipulate and analyze data efficiently. Here are the functionalities provided by the package:

1. get_wd_levels(levels)

  • Description: Get the working directory with the option of moving up parents.
  • Usage: get_wd_levels(levels)

2. remove_rows(data_frame, num_rows_to_remove)

  • Description: Removes a specified number of rows from a pandas DataFrame.
  • Usage: remove_rows(data_frame, num_rows_to_remove)

3. aggregate_daily_to_wc_long(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)

  • Description: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week. In the long format.
  • Usage: aggregate_daily_to_wc_long(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)

4. convert_monthly_to_daily(df, date_column)

  • Description: Converts monthly data in a DataFrame to daily data by expanding and dividing the numeric values.
  • Usage: convert_monthly_to_daily(df, date_column)

5. plot_two(df1, col1, df2, col2, date_column, same_axis=True)

  • Description: Plots specified columns from two different DataFrames using a shared date column. Useful for comparing data.
  • Usage: plot_two(df1, col1, df2, col2, date_column, same_axis=True)

6. remove_nan_rows(df, col_to_remove_rows)

  • Description: Removes rows from a DataFrame where the specified column has NaN values.
  • Usage: remove_nan_rows(df, col_to_remove_rows)

7. filter_rows(df, col_to_filter, list_of_filters)

  • Description: Filters the DataFrame based on whether the values in a specified column are in a provided list.
  • Usage: filter_rows(df, col_to_filter, list_of_filters)

8. plot_one(df1, col1, date_column)

  • Description: Plots a specified column from a DataFrame.
  • Usage: plot_one(df1, col1, date_column)

9. week_of_year_mapping(df, week_col, start_day_str)

  • Description: Converts a week column in 'yyyy-Www' or 'yyyy-ww' format to week commencing date.
  • Usage: week_of_year_mapping(df, week_col, start_day_str)

10. exclude_rows(df, col_to_filter, list_of_filters)

  • Description: Removes rows from a DataFrame based on whether the values in a specified column are not in a provided list.
  • Usage: exclude_rows(df, col_to_filter, list_of_filters)

11. rename_cols(df, cols_to_rename)

  • Description: Renames columns in a pandas DataFrame.
  • Usage: rename_cols(df, cols_to_rename)

12. merge_new_and_old(old_df, old_col, new_df, new_col, cutoff_date, date_col_name='OBS')

  • Description: Creates a new DataFrame with two columns: one for dates and one for merged numeric values.
  • Usage: merge_new_and_old(old_df, old_col, new_df, new_col, cutoff_date, date_col_name='OBS')

13. merge_dataframes_on_date(dataframes, common_column='OBS', merge_how='outer')

  • Description: Merge a list of DataFrames on a common column.
  • Usage: merge_dataframes_on_date(dataframes, common_column='OBS', merge_how='outer')

14. merge_and_update_dfs(df1, df2, key_column)

  • Description: Merges two dataframes on a key column, updates the first dataframe's columns with the second's where available, and returns a dataframe sorted by the key column.
  • Usage: merge_and_update_dfs(df1, df2, key_column)

15. convert_us_to_uk_dates(df, date_col)

  • Description: Convert a DataFrame column with mixed date formats to datetime.
  • Usage: convert_us_to_uk_dates(df, date_col)

16. combine_sheets(all_sheets)

  • Description: Combines multiple DataFrames from a dictionary into a single DataFrame.
  • Usage: combine_sheets({'Sheet1': df1, 'Sheet2': df2})

17. pivot_table(df, filters_dict, index_col, columns, values_col, fill_value=0,aggfunc='sum',margins=False,margins_name='Total',datetime_trans_needed=True)

  • Description: Dynamically pivots a DataFrame based on specified columns.
  • Usage: pivot_table(df, {'Master Include':' == 1','OBS':' >= datetime(2019,9,9)','Metric Short Names':' == 'spd''}, 'OBS', 'Channel Short Names', 'Value', fill_value=0,aggfunc='sum',margins=False,margins_name='Total',datetime_trans_needed=True)

18. apply_lookup_table_for_columns(df, col_names, to_find_dict, if_not_in_country_dict='Other'), new_column_name='Mapping')

  • Description: Equivalent of xlookup in excel. Allows you to map a dictionary of substrings within a column. If multiple columns are need for the LUT then a | seperator is needed.
  • Usage: classify_within_column(df, ['campaign type','media type'], {'France Paid Social FB|paid social': 'facebook','France Paid Social TW|paid social': 'twitter'}, 'other','mapping')

19. aggregate_daily_to_wc_wide(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)

  • Description: Aggregates daily data into weekly data, grouping and summing specified columns, starting on a specified day of the week. In the wide format.
  • Usage: aggregate_daily_to_wc_wide(df, date_column, group_columns, sum_columns, wc, aggregation='sum', include_totals=False)

20. merge_cols_with_seperator(self, df, col_names,seperator='_',output_column_name = 'Merged',starting_prefix_str=None,ending_prefix_str=None)

  • Description: Merge multiple columns in a dataframe into 1 column with a seperator.Can be used if multiple columns are needed for a LUT.
  • Usage: merge_cols_with_seperator(df, ['Campaign','Product'],seperator='|','Merged Columns',starting_prefix_str='start_',ending_prefix_str='_end')

21. check_sum_of_df_cols_are_equal(df_1,df_2,cols_1,cols_2)

  • Description: Checks if the sum of two columns in two dataframes are the same, and provides the sums of each column and the difference between them.
  • Usage: check_sum_of_df_cols_are_equal(df_1,df_2,'Media Cost','Spend')

22. convert_2_df_cols_to_dict(df, key_col, value_col)

  • Description: Can be used to create an LUT. Creates a dictionary using two columns in a dataframe.
  • Usage: convert_2_df_cols_to_dict(df, 'Campaign', 'Channel')

23. create_FY_and_H_columns(df, index_col, start_date, starting_FY,short_format='No',half_years='No',combined_FY_and_H='No')

  • Description: Used to create a financial year, half year, and financial half year column.
  • Usage: create_FY_and_H_columns(df, 'Week (M-S)', '2022-10-03', 'FY2023',short_format='Yes',half_years='Yes',combined_FY_and_H='Yes')

24. keyword_lookup_replacement(df, col, replacement_rows, cols_to_merge, replacement_lookup_dict,output_column_name='Updated Column')

  • Description: Essentially provides an if statement with a xlookup if a value is something. Updates certain chosen values in a specified column of the DataFrame based on a lookup dictionary.
  • Usage: keyword_lookup_replacement(df, 'channel', 'Paid Search Generic', ['channel','segment','product'], qlik_dict_for_channel,output_column_name='Channel New')

25. create_new_version_of_col_using_LUT(df, keys_col,value_col, dict_for_specific_changes, new_col_name='New Version of Old Col')

  • Description: Creates a new column in a dataframe, which takes an old column and uses a lookup table to changes values in the new column to reflect the lookup table. The lookup is based on a column in the dataframe.
  • Usage: keyword_lookup_replacement(df, '*Campaign Name','Campaign Type',search_campaign_name_retag_lut,'Campaign Name New')

26. convert_df_wide_2_long(df,value_cols,variable_col_name='Stacked',value_col_name='Value')

  • Description: Changes a dataframe from wide to long format.
  • Usage: keyword_lookup_replacement(df, ['Media Cost','Impressions','Clicks'],variable_col_name='Metric')

27. manually_edit_data(df, filters_dict, col_to_change, new_value, change_in_existing_df_col='No', new_col_to_change_name='New', manual_edit_col_name=None, add_notes='No', existing_note_col_name=None, note=None)

  • Description: Allows the capability to manually update any cell in dataframe by applying filters and chosing a column to edit in dataframe.
  • Usage: keyword_lookup_replacement(df, {'OBS':' <= datetime(2023,1,23)','File_Name':' == 'France media''},'Master Include',1,change_in_existing_df_col = 'Yes',new_col_to_change_name = 'Master Include',manual_edit_col_name = 'Manual Changes')

28. format_numbers_with_commas(df, decimal_length_chosen=2)

  • Description: Converts data in numerical format into numbers with commas and a chosen decimal place length.
  • Usage: format_numbers_with_commas(df,1)

29. filter_df_on_multiple_conditions(df, filters_dict)

  • Description: Filters dataframe on multiple conditions, which come in the form of a dictionary.
  • Usage: filter_df_on_multiple_conditions(df, {'OBS':' <= datetime(2023,1,23)','File_Name':' == 'France media''})

30. read_and_concatenate_files(folder_path, file_type='csv')

  • Description: Read and Concatinate all files of one type in a folder.
  • Usage: read_and_concatenate_files(folder_path, file_type='csv')

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imsciences-0.5.6.8.tar.gz (24.0 kB view hashes)

Uploaded Source

Built Distribution

imsciences-0.5.6.8-py3-none-any.whl (24.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page