Skip to main content

Imvideo: Image to video made easy. Powered by OpenCV.

Project description

Imvideo

Imvideo helps you create time-lapse videos from camera-generated image folder and your matplotlib loop.

Install Imvideo


To install this package, type pip install imvideo in command prompt.

C:\Users\user>pip install imvideo
Collecting imvideo
  Using cached imvideo-0.0.1-py3-none-any.whl (3.6 kB)
Installing collected packages: imvideo
Successfully installed imvideo-0.0.1

Function Details


Class local: timelapse(title, fps, folder_path, inspect=True):

timelapse(title, fps, folder_path, inspect=True):
Function constructs time-lapse video from images in a folder.
        Inputs:     title   (string)     video title + .avi
                    fps     (double)     time-lapse video frames per second 
                    folder_path    (raw string)    location of the image folder
                    inspect    (boolean)       True (default)/False
        Output:
                    time-lapse video

Class memory: savebuff(frame, container):

savebuff(frame, container):
Function saves image in in-memory location
         Inputs:    frame   (matplotlib image)  
                    container   (list)     empty image container
         Output:    container   (list)      image container with added frame location

construct(container, title, fps, inspect=True):

construct(container, title, fps, inspect=True):
Function constructs video from images in the container.
         Inputs:    container   (list)      image container with frame location
                    title   (string)     video title + .avi
                    fps     (double)     time-lapse video frames per second 
                    inspect    (boolean)       True (default)/False
         Output:
                    video

Use Imvideo


  1. Time-lapse video from a image folder:
import imvideo as imv

imv.local.timelapse(local.timelapse('demo.avi', 5,  r".\tests\test_image"))
  1. Time-lapse video from a matplotlib loop:
import imvideo as imv

def test_matplot_loop(n):
    ''' Input:      n   number of frames'''
    images = []     # empty image container
    plt.figure()    
    for i in range(n):
        plt.plot([np.random.randint(2), np.random.randint(2)])
        plt.title("test" + str(i))
        images = imv.memory.savebuff(plt, images)      # save image in in-memory location
        plt.clf()

    imv.memory.construct(images, 'matplot_demo.avi', 5)        # construct video; 5 fps

    return 

test_matplot_loop(100)      # construct a demo video with 100 frames

Sample output

Solve Laplace

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

imvideo-0.0.2.tar.gz (3.6 kB view details)

Uploaded Source

Built Distribution

imvideo-0.0.2-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file imvideo-0.0.2.tar.gz.

File metadata

  • Download URL: imvideo-0.0.2.tar.gz
  • Upload date:
  • Size: 3.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for imvideo-0.0.2.tar.gz
Algorithm Hash digest
SHA256 9734384b373476a9408405cb26756520ad9ddf39fa1c95c5751c18dc00efb58d
MD5 beeb8a6cb816dcef9af80a2c454c1c4c
BLAKE2b-256 e4e456456b9012e6bbd7976f7c8df593b064fe15c8c62887d52b7c5ebd02f379

See more details on using hashes here.

File details

Details for the file imvideo-0.0.2-py3-none-any.whl.

File metadata

  • Download URL: imvideo-0.0.2-py3-none-any.whl
  • Upload date:
  • Size: 4.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.1 requests-toolbelt/0.9.1 tqdm/4.55.1 CPython/3.9.1

File hashes

Hashes for imvideo-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 33972c1a2656b53d82c5d585b7595869df5bd6ba154dbbbd62023c8fe31c33de
MD5 674960b38718fd8953b034cc06cec750
BLAKE2b-256 b8125162a26118be894611c8d8095a0a99049ae7682a65312d64afdca1ebac3b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page