A package for reading id and name on KTP and SIM
Project description
Indo OCR Army
This is a package for OCR Identity card in Indonesia (KTP and SIM). This packages build on top of detectron2 so you should install detectron2 first and some requirements need to install separately before you run this packages, Note that we test it on a device with GPU/CUDA
if there is an error please report an issue to our email. After install this package, please follow the tutorial bellow:
# if use conda
conda install pytorch torchvision cudatoolkit=10.2 -c pytorch
# if use python
pip install torch==1.5.1
pip install torchvision
python -m pip install detectron2 -f \ https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.5/index.html
for comprehensive use, you can do this:
import os
import cv2
import matplotlib.pyplot as plt
from IndoOCRArmy import defaultConfig, DrawOCR, numericalDetectron2, boundingBoxesDetectron2, alphabeticalDetectron2, easypredict
# load classes
cfg = defaultConfig()
for key in cfg.keys():
if 'list_cuda' in cfg[key]:
cfg[key]['list_cuda'] = [0]
drawer_ocr = DrawOCR(cfg['drawOCR'])
bBoxDet = boundingBoxesDetectron2(cfg['boundingBoxesDetectron2'])
numDet = numericalDetectron2(cfg['numericalDetectron2'])
alphaDet = alphabeticalDetectron2(cfg['alphabeticalDetectron2'])
# load image
image_ktp = cv2.imread("assets/ktp_example.jpg")
image_sim = cv2.imread("assets/sim_example.jpg")
# detect boundingboxes
crops, boxes, labels = bBoxDet.predict(image_ktp, input_type='ktp')
# detect number and alphabet
dict_ID = numDet.predict_ensemble(crops[0])
dict_Name = alphaDet.predict_ensemble(crops[1])
# choose `weighted_hardvote_word` for the best result according to our benchmark
ID = dict_ID.get("weighted_hardvote_word")
Name = dict_Name.get("weighted_hardvote_word")
# parse NIK to get information about : location, gender, and birthdate
parse_NIK = numDet.parse_nik(ID)
# create listdata and listlabel for visualization later
listdata = [ID, Name]
listlabel = [x for x in list(labels.values()) if x is not None]
for label, data in parse_NIK.items():
listdata.append(data)
listlabel.append(label)
print(ID)
print(Name)
drawer_ocr.show_list_images(list_img=crops.values())
For visuzlize comprehensive result, use this:
drawer_ocr.show_desc(image_ktp, boxes, labels, listdata, listlabel)
For quick result, use this:
image_ktp = cv2.imread("assets/ktp_example.jpg")
easypredict(image_ktp, bBoxDet, numDet, alphaDet, input_type='ktp')
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file indOCRArmy-0.1.13.tar.gz
.
File metadata
- Download URL: indOCRArmy-0.1.13.tar.gz
- Upload date:
- Size: 12.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 71b683c8d0a16b214aeb6a265b707d75df5bfec7890c0d1e9363a1c828fceb8e |
|
MD5 | 9528b4dd9002f192d37269af54430b92 |
|
BLAKE2b-256 | 09776919e44d0fb5fb609fc7603ca1bde8327bf7c0d15671f1bee48223a191ec |
File details
Details for the file indOCRArmy-0.1.13-py3-none-any.whl
.
File metadata
- Download URL: indOCRArmy-0.1.13-py3-none-any.whl
- Upload date:
- Size: 12.5 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4f65384a56c26179878b5bc65ba7a9c4df729b7e3c51832e3fff4b08ee5ee7da |
|
MD5 | df2217855013aac2ce76f63213f12022 |
|
BLAKE2b-256 | 1578ba29adab7e7ce58dc24746ba615adc5ee64e30eb4f87a41a769776956091 |