Skip to main content

A module to use common logger module with indentation support

Project description

IndentedLogger

IndentedLogger is a powerful yet simple wrapper around Python's standard logging package that adds automatic indentation and enhanced formatting support to your logs. It visually represents the hierarchical structure and depth of your logging messages, making it easier to understand the flow of execution in complex systems.

Table of Contents

Features

  • Automatic Indentation via Decorators: Use decorators to automatically manage indentation levels based on function call hierarchy.
  • Manual Indentation Support: Add manual indentation to specific log messages for granular control.
  • Custom Formatter and Logger: Includes an IndentFormatter and a custom logger class that handle indentation and formatting seamlessly.
  • Optional Function Names: Choose to include or exclude function names in your log messages.
  • Function Name Alignment: Align function names at a specified column for consistent and readable logs.
  • Message Truncation (Optional): Optionally truncate long messages to a specified length.
  • Thread Safety: Manages indentation levels per thread, ensuring correct behavior in multi-threaded applications.
  • Easy Integration: Seamlessly integrates with existing logging setups with minimal changes.

Installation

You can install IndentedLogger via pip:

pip install indented_logger

Note: Ensure that your Python version is 3.8 or higher to utilize all features effectively.

Usage

Basic Setup

from indented_logger import IndentedLogger
import logging

# Setup the logger
logger_setup = IndentedLogger(name='my_logger', level=logging.INFO)
logger = logger_setup.get_logger()

# Basic logging
logger.info('Starting process')
logger.info('Process complete')

Automatic Indentation with Decorators

Use the @log_indent decorator to automatically manage indentation levels based on function calls.

from indented_logger import IndentedLogger, log_indent
import logging

# Setup the logger with function names included
logger_setup = IndentedLogger(name='my_logger', level=logging.INFO, include_func=True)
logger = logger_setup.get_logger()

@log_indent
def start_process():
    logger.info('Starting process')
    load_data()
    process_data()
    logger.info('Process complete')

@log_indent
def load_data():
    logger.info('Loading data')

@log_indent
def process_data():
    logger.info('Processing data')

start_process()

Output:

2024-08-15 12:34:56 - INFO     - Entering function: start_process           {start_process}
2024-08-15 12:34:56 - INFO     -     Starting process                       {start_process}
2024-08-15 12:34:56 - INFO     -     Entering function: load_data           {load_data}
2024-08-15 12:34:56 - INFO     -         Loading data                       {load_data}
2024-08-15 12:34:56 - INFO     -     Exiting function: load_data            {load_data}
2024-08-15 12:34:56 - INFO     -     Entering function: process_data        {process_data}
2024-08-15 12:34:56 - INFO     -         Processing data                    {process_data}
2024-08-15 12:34:56 - INFO     -     Exiting function: process_data         {process_data}
2024-08-15 12:34:56 - INFO     -     Process complete                       {start_process}
2024-08-15 12:34:56 - INFO     - Exiting function: start_process            {start_process}

Manual Indentation

You can manually adjust indentation levels using the lvl parameter in logging calls.

# Manual indentation
logger.info('Starting process', lvl=0)
logger.info('Loading data', lvl=1)
logger.info('Processing data', lvl=2)
logger.info('Saving results', lvl=1)
logger.info('Process complete', lvl=0)

Output:

2024-08-15 12:34:56 - INFO     - Starting process
2024-08-15 12:34:56 - INFO     -     Loading data
2024-08-15 12:34:56 - INFO     -         Processing data
2024-08-15 12:34:56 - INFO     -     Saving results
2024-08-15 12:34:56 - INFO     - Process complete

Including or Excluding Function Names

Include or exclude function names in your log messages by setting the include_func parameter when initializing IndentedLogger.

# Include function names
logger_setup = IndentedLogger(name='my_logger', level=logging.INFO, include_func=True)

# Exclude function names
logger_setup = IndentedLogger(name='my_logger', level=logging.INFO, include_func=False)

Aligning Function Names at a Specific Column

You can align function names at a specific column using the min_func_name_col parameter. This ensures that the function names start at the same column in each log entry, improving readability.

# Setup the logger with function names included and alignment at column 80
logger_setup = IndentedLogger(
    name='my_logger',
    level=logging.INFO,
    include_func=True,
    min_func_name_col=80
)
logger = logger_setup.get_logger()

@log_indent
def example_function():
    logger.info('This is a log message that might be quite long and needs proper alignment')

example_function()

Output:

2024-08-15 12:34:56 - INFO     - Entering function: example_function                      {example_function}
2024-08-15 12:34:56 - INFO     -     This is a log message that might be quite long and needs proper alignment  {example_function}
2024-08-15 12:34:56 - INFO     - Exiting function: example_function                       {example_function}

Explanation:

  • The function names are aligned at or after the 80th character column.
  • If the message is longer than the specified column, the function name moves further to the right, ensuring the message is not truncated.

Message Truncation (Optional)

You can enable message truncation to limit the length of log messages. Set the truncate_messages parameter to True when initializing IndentedLogger.

# Setup the logger with message truncation enabled
logger_setup = IndentedLogger(
    name='my_logger',
    level=logging.INFO,
    include_func=True,
    truncate_messages=True
)
logger = logger_setup.get_logger()

@log_indent
def example_function():
    logger.info('This is a very long log message that will be truncated to a maximum length')

example_function()

Output:

2024-08-15 12:34:56 - INFO     - Entering function: example_function      {example_function}
2024-08-15 12:34:56 - INFO     -     This is a very long log message th...{example_function}
2024-08-15 12:34:56 - INFO     - Exiting function: example_function       {example_function}

Notes:

  • The messages are truncated to a default maximum length (e.g., 50 characters).
  • You can adjust the maximum message length by modifying the max_message_length variable in the IndentFormatter class.

Benefits

  • Enhanced Readability: Visually represent the hierarchy and depth of operations in your logs.
  • Organized Logs: Group related log messages, making it easier to understand nested processes.
  • Simplicity: Minimalistic design adds just what you need without altering core logging functionalities.
  • Customizable Formatting: Control inclusion of function names, alignment, and message truncation.
  • Easy Integration: Works with existing logging setups with minimal changes to your configuration.
  • Flexible Indentation: Supports both automatic and manual indentation for granular control.

License

IndentedLogger is released under the MIT License.


Note: If you encounter any issues or have suggestions for improvements, feel free to open an issue or submit a pull request on GitHub.


Additional Details

IndentedLogger Class Parameters

  • name (str): The name of the logger.
  • level (int): Logging level (e.g., logging.INFO, logging.DEBUG).
  • log_file (str, optional): Path to a log file. If provided, logs will also be written to this file.
  • include_func (bool, optional): Whether to include function names in log messages. Default is False.
  • truncate_messages (bool, optional): Whether to truncate long messages. Default is False.
  • min_func_name_col (int, optional): The minimum column at which function names should appear. Default is 80.

Example with All Parameters

logger_setup = IndentedLogger(
    name='my_logger',
    level=logging.DEBUG,
    log_file='app.log',
    include_func=True,
    truncate_messages=False,
    min_func_name_col=80
)
logger = logger_setup.get_logger()

Customizing Indentation and Formatting

  • Adjust Indentation Width: Modify the number of spaces used for each indentation level by changing the multiplication factor in the IndentFormatter class.
  • Set Date Format: Pass a datefmt parameter when initializing IndentedLogger or IndentFormatter to customize the timestamp format.

Thread Safety

IndentedLogger uses thread-local storage to manage indentation levels per thread, ensuring that logs from different threads are correctly indented.

Advanced Usage

For advanced use cases, you can extend or modify the CustomLogger and IndentFormatter classes to suit your specific requirements.


This updated documentation reflects the latest features and enhancements made to IndentedLogger, providing you with greater control and flexibility over your logging output.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

indented_logger-0.1.6.tar.gz (6.6 kB view hashes)

Uploaded Source

Built Distribution

indented_logger-0.1.6-py3-none-any.whl (6.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page