Skip to main content

Python Client for Indexify

Project description

Indexify Python SDK

PyPI version Discord

This is the Python SDK to build real-time continuously running unstructured data processing pipelines with Indexify.

Start by writing and testing your pipelines locally using your data, then deploy them into the Indexify service to process data in real-time at scale.

Installation

pip install indexify

Examples

PDF Document Extraction

  1. Extracts text, tables and images from an ingested PDF file
  2. Indexes the text using MiniLM-L6-v2, the images with CLIP
  3. Writes the results into a vector database.

Youtube Transcription Summarizer

  1. Downloads Youtube Video
  2. Extracts audio from the video and transcribes using Faster Whisper
  3. Uses Llama 3.1 backed by Llama.cpp to understand and classify the nature of the video.
  4. Routes the transcription dynamically to one of the transcription summarizer to retain specific summarization attributes.
  5. Finally the entire transcription is embedded and stored in a vector database for retrieval.

Quick Start

  1. Write data processing functions in Python and use Pydantic objects for returning complex data types from functions
  2. Connect functions using a graph interface. Indexify automatically stores function outputs and passes them along to downstream functions.
  3. If a function returns a list, the downstream functions will be called with each item in the list in parallel.
  4. The input of the first function becomes the input to the HTTP endpoint of the Graph.

Functional Features

  1. There is NO limit to volume of data being ingested since we use blob stores for storing metadata and objects
  2. The server can handle 10s of 1000s of files being ingested into the graphs in parallel.
  3. The scheduler reacts under 8 microseconds to ingestion events, so it's suitable for workflows which needs to run in realtime.
  4. Batch ingestion is handled gracefully by batching ingested data and scheduling for high throughput in production settings.
from pydantic import BaseModel
from indexify import indexify_function
from typing import Dict, Any, Optional, List

# Define function inputs and outputs
class Document(BaseModel):
    text: str
    metadata: Dict[str, Any]

class TextChunk(BaseModel):
    text: str
    metadata: Dict[str, Any]
    embedding: Optional[List[float]] = None


# Decorate a function which is going to be part of your data processing graph
@indexify_function()
def split_text(doc: Document) -> List[TextChunk]:
    midpoint = len(doc.text) // 2
    first_half = TextChunk(text=doc.text[:midpoint], metadata=doc.metadata)
    second_half = TextChunk(text=doc.text[midpoint:], metadata=doc.metadata)
    return [first_half, second_half]

# Any requirements specified is automatically installed in production clusters
@indexify_function(requirements=["langchain_text_splitter"])
def compute_embedding(chunk: TextChunk) -> TextChunk:
    chunk.embedding = [0.1, 0.2, 0.3]
    return chunk

# You can constrain functions to run on specific executors 
@indexify_function(executor_runtime_name="postgres-driver-image")
def write_to_db(chunk: TextChunk):
    # Write to your favorite vector database
    ...

## Create a graph
from indexify import Graph

g = Graph(name="my_graph", start_node=split_text)
g.add_edge(split_text, compute_embedding)
g.add_edge(embed_text, write_to_db)

Graph Execution

Every time the Graph is invoked, Indexify will provide an Invocation Id which can be used to know about the status of the processing and any outputs from the Graph.

Run the Graph Locally

from indexify import IndexifyClient

client = IndexifyClient(local=True)
client.register_graph(g)
invocation_id = client.invoke_graph_with_object(g.name, Document(text="Hello, world!", metadata={"source": "test"}))
graph_outputs = client.graph_outputs(g.name, invocation_id)

Deploy the Graph to Indexify Server for Production

Work In Progress - The version of server that works with python based graphs haven't been released yet. It will be shortly released. Join discord for development updates.

from indexify import IndexifyClient

client = IndexifyClient(service_url="http://localhost:8900")
client.register_graph(g)

Ingestion into the Service

Extraction Graphs continuously run on the Indexify Service like any other web service. Indexify Server runs the extraction graphs in parallel and in real-time when new data is ingested into the service.

output_id = client.invoke_graph_with_object(g.name, Document(text="Hello, world!", metadata={"source": "test"}))

Retrieve Graph Outputs for a given ingestion object

graph_outputs = client.graph_outputs(g.name, output_id)

Retrieve All Graph Inputs

graph_inputs = client.graph_inputs(g.name)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

indexify-0.2.30.tar.gz (34.9 kB view details)

Uploaded Source

Built Distribution

indexify-0.2.30-py3-none-any.whl (45.2 kB view details)

Uploaded Python 3

File details

Details for the file indexify-0.2.30.tar.gz.

File metadata

  • Download URL: indexify-0.2.30.tar.gz
  • Upload date:
  • Size: 34.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for indexify-0.2.30.tar.gz
Algorithm Hash digest
SHA256 2591113a088e4b5defd1fb91677f2adbd52ba86b42e96906d7228d29db794c4a
MD5 65aa9c8fcc5166f68f6cf9e32be143cc
BLAKE2b-256 1b48f3de9ac3450389379ade643186ca70cf75354d3ee356dcab9338635977d9

See more details on using hashes here.

Provenance

The following attestation bundles were made for indexify-0.2.30.tar.gz:

Publisher: publish_indexify_pypi.yaml on tensorlakeai/indexify

Attestations:

File details

Details for the file indexify-0.2.30-py3-none-any.whl.

File metadata

  • Download URL: indexify-0.2.30-py3-none-any.whl
  • Upload date:
  • Size: 45.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for indexify-0.2.30-py3-none-any.whl
Algorithm Hash digest
SHA256 57c8bdef421e54a85b3163337527f25fdd062b62bca7258835064a81c0ab9336
MD5 9e99d98e0af4c8bed46558a8167356fe
BLAKE2b-256 d069ebf552e026adb5789ccd4a6792117b097972eb7e200c9d8a3e2288c6eb2f

See more details on using hashes here.

Provenance

The following attestation bundles were made for indexify-0.2.30-py3-none-any.whl:

Publisher: publish_indexify_pypi.yaml on tensorlakeai/indexify

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page