Skip to main content

Coefficients to measure inequality.

Project description

Inequality Coefficients:

This is small library with some implemented coefficients (or indices) intended to measure inequality or concentration of the values in a population.

Implemented coefficients

  • Gini Coefficient:
    • Ordinary
    • Corrected: Using a correction for small datasets based on Deltas, 2003.
  • Ratio top / rest

Installation

This library is hosted on PyPI, so installation is straightforward. The easiest way to install type this at the command line (Linux, Mac, or Windows):

pip install inequality_coefficients

This library also depends on numpy, but pip should take of that for you already.

Basic Usage

For the simplest, typical use cases, this tells you everything you need to know.:

import inequality_coefficients as ineq
data = array([1.7, 3.2 ...]) # data can be list of nums or numpy array
gini_coeff = ineq.gini_coeff(data)
ratio_top_rest = ineq.ratio_top10_rest(data)

Acknowledgements

Firstly, I was based on Felipe Ortega's wikixray code for implementing the gini coefficient, however, my code has changed so much and I'm using numpy as backend.

Anyway, I want to thank him for open sourcing that project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

inequality_coefficients-1.1.1.tar.gz (3.0 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing Datadog Datadog Monitoring Facebook / Instagram Facebook / Instagram PSF Sponsor Fastly Fastly CDN Google Google Object Storage and Download Analytics Huawei Huawei PSF Sponsor Microsoft Microsoft PSF Sponsor NVIDIA NVIDIA PSF Sponsor Pingdom Pingdom Monitoring Salesforce Salesforce PSF Sponsor Sentry Sentry Error logging StatusPage StatusPage Status page