Skip to main content

infinity

Project description

The AI-native database built for LLM applications, providing incredibly fast hybrid search of dense embedding, sparse embedding, tensor and full-text

Document | Benchmark | Twitter | Discord

Infinity is a cutting-edge AI-native database that provides a wide range of search capabilities for rich data types such as dense vector, sparse vector, tensor, full-text, and structured data. It provides robust support for various LLM applications, including search, recommenders, question-answering, conversational AI, copilot, content generation, and many more RAG (Retrieval-augmented Generation) applications.

⚡️ Performance

🌟 Key Features

Infinity comes with high performance, flexibility, ease-of-use, and many features designed to address the challenges facing the next-generation AI applications:

🚀 Incredibly fast

  • Achieves 0.1 milliseconds query latency and 15K+ QPS on million-scale vector datasets.
  • Achieves 1 millisecond latency and 12K+ QPS in full-text search on 33M documents.

See the Benchmark report for more information.

🔮 Powerful search

  • Supports a hybrid search of dense embedding, sparse embedding, tensor, and full text, in addition to filtering.
  • Supports several types of rerankers including RRF, weighted sum and ColBERT.

🍔 Rich data types

Supports a wide range of data types including strings, numerics, vectors, and more.

🎁 Ease-of-use

  • Intuitive Python API. See the Python API
  • A single-binary architecture with no dependencies, making deployment a breeze.
  • Embedded in Python as a module and friendly to AI developers.

🎮 Get Started

Infinity, also available as a Python module, eliminates the need for a separate back-end server and all the complex communication settings. Using pip install and import infinity, you can quickly build a local AI application in Python, leveraging the world's fastest and the most powerful RAG database:

pip install infinity-sdk==0.4.0.dev1
import infinity

# Connect to infinity
infinity_obj = infinity.connect("/path/to/save/to")
db = infinity_obj.get_database("default_db")
table = db.create_table("my_table", {"num": {"type": "integer"}, "body": {"type": "varchar"}, "vec": {"type": "vector, 4, float"}})
table.insert([{"num": 1, "body": "unnecessary and harmful", "vec": [1.0, 1.2, 0.8, 0.9]}])
table.insert([{"num": 2, "body": "Office for Harmful Blooms", "vec": [4.0, 4.2, 4.3, 4.5]}])
res = table.output(["*"]).match_dense("vec", [3.0, 2.8, 2.7, 3.1], "float", "ip", 2).to_pl()
print(res)

🛠️ Deploy Infinity as a separate server

If you wish to deploy a standalone Infinity server and access it remotely:

See Deploy infinity server.

🛠️ Build from Source

See Build from Source.

💡 For more information about Infinity's Python API, see the Python API Reference.

📚 Document

📜 Roadmap

See the Infinity Roadmap 2024

🙌 Community

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

infinity_sdk-0.4.0.dev1-py3-none-any.whl (59.5 kB view details)

Uploaded Python 3

File details

Details for the file infinity_sdk-0.4.0.dev1-py3-none-any.whl.

File metadata

File hashes

Hashes for infinity_sdk-0.4.0.dev1-py3-none-any.whl
Algorithm Hash digest
SHA256 4050cc18401fb7490718ce1adc959e24f934ed54d3cc29bfef85757e5928b515
MD5 1812c3e58bd079660d1b224a846e8000
BLAKE2b-256 55d1bdabeb789cd5b90618a7c38e73461ec93a64f95e5d2f1d60d54e70eca6d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page