General python code for analysis pipeline
Project description
Inflow
Core package for analysis, and pipelining utilities in the Haiss Lab
Find the documentation for the functions of this package in a searchable website here : https://haisslab.pages.pasteur.fr/analysis-packages/Inflow/
Requirements
Inflow requires python 3.7 or later, and is tested on Windows 10.
Installing
Installing the package via pip typically takes a few seconds. To install, activate your developpement environment :
conda activate <myenvironment>
If you don't have an environment or conda installed, follow these instructions
Then run the Inflow install using :
pip install git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git
NB:
This package is still under active development, for the best experience please regularly update the package by running :
pip install --force-reinstall --no-deps -U git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git
For dev environment (expect bugs), use this one :
pip install --force-reinstall --no-deps git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git@dev
This will force the reinstallation of the package, without the need to do a pip uninstall Inflow
first, and without reinstalling the dependancies like numpy etc (hence faster).
For pre-realeases environment (dev after minimal testing, please don't hesitate to report bugs), use this one :
pip install --force-reinstall --no-deps -U git+https://gitlab.pasteur.fr/haisslab/analysis-packages/Inflow.git@pre-releases
Usage
import Inflow
Inflow.load.tdms("mytdmsfile.tdms").
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for inflow_haisslab-1.2.7-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b15f6ff6a60a09a560ff7f775ad25d4c65827adf53b3a3f89b35e541727333df |
|
MD5 | 214dcec91cbc9e7a0d2e2e32ecada1ed |
|
BLAKE2b-256 | 0c50289c47f760a22973e56dbeee32837925c9fe0d5f12da12664778401709b0 |