Skip to main content

Community Python client for InfluxDB 3.0

Project description

Your Image

PyPI version PyPI downloads Lint Code Base Lint Code Base Community Slack

InfluxDB 3.0 Python Client

Introduction

influxdb_client_3 is a Python module that provides a simple and convenient way to interact with InfluxDB 3.0. This module supports both writing data to InfluxDB and querying data using the Flight client, which allows you to execute SQL and InfluxQL queries on InfluxDB 3.0.

Dependencies

  • pyarrow (automatically installed)
  • pandas (optional)

Installation

You can install 'influxdb3-python' using pip:

pip install influxdb3-python

Note: This does not include Pandas support. If you would like to use key features such as to_pandas() and write_file() you will need to install pandas separately.

Note: Please make sure you are using 3.6 or above. For the best performance use 3.11+

Usage

One of the easiest ways to get started is to checkout the "Pokemon Trainer Cookbook". This scenario takes you through the basics of both the client library and Pyarrow.

Importing the Module

from influxdb_client_3 import InfluxDBClient3, Point

Initialization

If you are using InfluxDB Cloud, then you should note that:

  1. You will need to supply your org id, this is not necessary for InfluxDB Dedicated.
  2. Use a bucketname for the database argument.
client = InfluxDBClient3(token="your-token",
                         host="your-host",
                         org="your-org",
                         database="your-database")

Writing Data

You can write data using the Point class, or supplying line protocol.

Using Points

point = Point("measurement").tag("location", "london").field("temperature", 42)
client.write(point)

Using Line Protocol

point = "measurement fieldname=0"
client.write(point)

Write from file

Users can import data from CSV, JSON, Feather, ORC, Parquet

import influxdb_client_3 as InfluxDBClient3
import pandas as pd
import numpy as np
from influxdb_client_3 import write_client_options, WritePrecision, WriteOptions, InfluxDBError


class BatchingCallback(object):

    def success(self, conf, data: str):
        print(f"Written batch: {conf}, data: {data}")

    def error(self, conf, data: str, exception: InfluxDBError):
        print(f"Cannot write batch: {conf}, data: {data} due: {exception}")

    def retry(self, conf, data: str, exception: InfluxDBError):
        print(f"Retryable error occurs for batch: {conf}, data: {data} retry: {exception}")

callback = BatchingCallback()

write_options = WriteOptions(batch_size=500,
                                        flush_interval=10_000,
                                        jitter_interval=2_000,
                                        retry_interval=5_000,
                                        max_retries=5,
                                        max_retry_delay=30_000,
                                        exponential_base=2)

wco = write_client_options(success_callback=callback.success,
                          error_callback=callback.error,
                          retry_callback=callback.retry,
                          WriteOptions=write_options 
                        )

with  InfluxDBClient3.InfluxDBClient3(
    token="INSERT_TOKEN",
    host="eu-central-1-1.aws.cloud2.influxdata.com",
    org="6a841c0c08328fb1",
    database="python", write_client_options=wco) as client:


    client.write_file(
        file='./out.csv',
        timestamp_column='time', tag_columns=["provider", "machineID"])
    
    client.write_file(
        file='./out.json',
        timestamp_column='time', tag_columns=["provider", "machineID"], date_unit='ns' )
    

Pandas DF

client._write_api.write(bucket="pokemon-codex", record=pd_df, data_frame_measurement_name='caught', data_frame_tag_columns=['trainer', 'id', 'num'], data_frame_timestamp_column='timestamp')

Polars DF

client._write_api.write(bucket="pokemon-codex", record=pl_df, data_frame_measurement_name='caught', data_frame_tag_columns=['trainer', 'id', 'num'], data_frame_timestamp_column='timestamp')

Querying

Querying with SQL

query = "select * from measurement"
reader = client.query(query=query, language="sql")
table = reader.read_all()
print(table.to_pandas().to_markdown())

Querying with influxql

query = "select * from measurement"
reader = client.query(query=query, language="influxql")
table = reader.read_all()
print(table.to_pandas().to_markdown())

Windows Users

Currently, Windows users require an extra installation when querying via Flight natively. This is due to the fact gRPC cannot locate Windows root certificates. To work around this please follow these steps: Install certifi

pip install certifi

Next include certifi within the flight client options:

import influxdb_client_3 as InfluxDBClient3
import pandas as pd
import numpy as np
from influxdb_client_3 import flight_client_options
import certifi

fh = open(certifi.where(), "r")
cert = fh.read()
fh.close()


client = InfluxDBClient3.InfluxDBClient3(
    token="",
    host="b0c7cce5-8dbc-428e-98c6-7f996fb96467.a.influxdb.io",
    org="6a841c0c08328fb1",
    database="flightdemo",
    flight_client_options=flight_client_options(
        tls_root_certs=cert))


table = client.query(
    query="SELECT * FROM flight WHERE time > now() - 4h",
    language="influxql")

print(table.to_pandas())

You may also include your own root certificate via this manor aswell.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

influxdb3-python-0.3.3.tar.gz (55.0 kB view details)

Uploaded Source

Built Distribution

influxdb3_python-0.3.3-py3-none-any.whl (70.7 kB view details)

Uploaded Python 3

File details

Details for the file influxdb3-python-0.3.3.tar.gz.

File metadata

  • Download URL: influxdb3-python-0.3.3.tar.gz
  • Upload date:
  • Size: 55.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for influxdb3-python-0.3.3.tar.gz
Algorithm Hash digest
SHA256 d9659440a8a062256236e5c897e81ded92764637aca742c45b4497659b0e40d7
MD5 7d88906dcc381f4ec62fd65abfb242db
BLAKE2b-256 3aeda2fab4a2cfb2cc74a4c1399dc22aeeeffdcdd5b78c35c3cf9a32dce29897

See more details on using hashes here.

File details

Details for the file influxdb3_python-0.3.3-py3-none-any.whl.

File metadata

File hashes

Hashes for influxdb3_python-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 5c5c4e5c889227fd3b63e92f6282f0966f082fb5978ac770fa75146e91632478
MD5 67531240b55ce2ccc7f424b71fa0fa00
BLAKE2b-256 19e7480bceaf788e17786ed000abbb1d8bc8e7ec4e1d5a252da819fcaef68872

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page