Skip to main content

Community Python client for InfluxDB 3.0

Project description

Your Image

PyPI version PyPI downloads CodeQL analysis CircleCI Code Cov Community Slack

InfluxDB 3.0 Python Client

Introduction

influxdb_client_3 is a Python module that provides a simple and convenient way to interact with InfluxDB 3.0. This module supports both writing data to InfluxDB and querying data using the Flight client, which allows you to execute SQL and InfluxQL queries on InfluxDB 3.0.

We offer a "Getting Started: InfluxDB 3.0 Python Client Library" video that goes over how to use the library and goes over the examples.

Dependencies

  • pyarrow (automatically installed)
  • pandas (optional)

Installation

You can install 'influxdb3-python' using pip:

pip install influxdb3-python

Note: This does not include Pandas support. If you would like to use key features such as to_pandas() and write_file() you will need to install pandas separately.

Note: Please make sure you are using 3.6 or above. For the best performance use 3.11+

Usage

One of the easiest ways to get started is to checkout the "Pokemon Trainer Cookbook". This scenario takes you through the basics of both the client library and Pyarrow.

Importing the Module

from influxdb_client_3 import InfluxDBClient3, Point

Initialization

If you are using InfluxDB Cloud, then you should note that:

  1. You will need to supply your org id, this is not necessary for InfluxDB Dedicated.
  2. Use a bucketname for the database argument.
client = InfluxDBClient3(token="your-token",
                         host="your-host",
                         org="your-org",
                         database="your-database")

Writing Data

You can write data using the Point class, or supplying line protocol.

Using Points

point = Point("measurement").tag("location", "london").field("temperature", 42)
client.write(point)

Using Line Protocol

point = "measurement fieldname=0"
client.write(point)

Write from file

Users can import data from CSV, JSON, Feather, ORC, Parquet

import influxdb_client_3 as InfluxDBClient3
import pandas as pd
import numpy as np
from influxdb_client_3 import write_client_options, WritePrecision, WriteOptions, InfluxDBError


class BatchingCallback(object):

    def success(self, conf, data: str):
        print(f"Written batch: {conf}, data: {data}")

    def error(self, conf, data: str, exception: InfluxDBError):
        print(f"Cannot write batch: {conf}, data: {data} due: {exception}")

    def retry(self, conf, data: str, exception: InfluxDBError):
        print(f"Retryable error occurs for batch: {conf}, data: {data} retry: {exception}")

callback = BatchingCallback()

write_options = WriteOptions(batch_size=500,
                                        flush_interval=10_000,
                                        jitter_interval=2_000,
                                        retry_interval=5_000,
                                        max_retries=5,
                                        max_retry_delay=30_000,
                                        exponential_base=2)

wco = write_client_options(success_callback=callback.success,
                          error_callback=callback.error,
                          retry_callback=callback.retry,
                          write_options=write_options
                        )

with  InfluxDBClient3.InfluxDBClient3(
    token="INSERT_TOKEN",
    host="eu-central-1-1.aws.cloud2.influxdata.com",
    org="6a841c0c08328fb1",
    database="python", write_client_options=wco) as client:


    client.write_file(
        file='./out.csv',
        timestamp_column='time', tag_columns=["provider", "machineID"])

    client.write_file(
        file='./out.json',
        timestamp_column='time', tag_columns=["provider", "machineID"], date_unit='ns' )

Pandas DF

client._write_api.write(bucket="pokemon-codex", record=pd_df, data_frame_measurement_name='caught', data_frame_tag_columns=['trainer', 'id', 'num'], data_frame_timestamp_column='timestamp')

Polars DF

client._write_api.write(bucket="pokemon-codex", record=pl_df, data_frame_measurement_name='caught', data_frame_tag_columns=['trainer', 'id', 'num'], data_frame_timestamp_column='timestamp')

Querying

Querying with SQL

query = "select * from measurement"
reader = client.query(query=query, language="sql")
table = reader.read_all()
print(table.to_pandas().to_markdown())

Querying with influxql

query = "select * from measurement"
reader = client.query(query=query, language="influxql")
table = reader.read_all()
print(table.to_pandas().to_markdown())

Windows Users

Currently, Windows users require an extra installation when querying via Flight natively. This is due to the fact gRPC cannot locate Windows root certificates. To work around this please follow these steps: Install certifi

pip install certifi

Next include certifi within the flight client options:

import influxdb_client_3 as InfluxDBClient3
import pandas as pd
import numpy as np
from influxdb_client_3 import flight_client_options
import certifi

fh = open(certifi.where(), "r")
cert = fh.read()
fh.close()


client = InfluxDBClient3.InfluxDBClient3(
    token="",
    host="b0c7cce5-8dbc-428e-98c6-7f996fb96467.a.influxdb.io",
    org="6a841c0c08328fb1",
    database="flightdemo",
    flight_client_options=flight_client_options(
        tls_root_certs=cert))


table = client.query(
    query="SELECT * FROM flight WHERE time > now() - 4h",
    language="influxql")

print(table.to_pandas())

You may also include your own root certificate via this manor aswell.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

influxdb3_python-0.6.1.tar.gz (60.2 kB view details)

Uploaded Source

Built Distribution

influxdb3_python-0.6.1-py3-none-any.whl (73.0 kB view details)

Uploaded Python 3

File details

Details for the file influxdb3_python-0.6.1.tar.gz.

File metadata

  • Download URL: influxdb3_python-0.6.1.tar.gz
  • Upload date:
  • Size: 60.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.19

File hashes

Hashes for influxdb3_python-0.6.1.tar.gz
Algorithm Hash digest
SHA256 81624b47bdf18b2f6ef2054c7779f988c39f64e434b2c940089cac2342088a9e
MD5 1cb03bdf4bf2861ce2cde96acb8771e5
BLAKE2b-256 824970e76e8b2cdacfb33b21c10d7eae0596afca58a70351d08b8576a5bb644f

See more details on using hashes here.

File details

Details for the file influxdb3_python-0.6.1-py3-none-any.whl.

File metadata

File hashes

Hashes for influxdb3_python-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ecf277412b5a7c10765d472d75d8dcd90455de6b3756146d88f26bb52ecc07f5
MD5 b559ecb6e1b1a0a29b6a21f3353d2cad
BLAKE2b-256 f60b0f212553e1170938b61af309cf5a98858dcf4d3702c3848d0a27f351f840

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page