Skip to main content

Community Python client for InfluxDB 3.0

Project description

Your Image

PyPI version PyPI downloads CodeQL analysis CircleCI Code Cov Community Slack

InfluxDB 3.0 Python Client

Introduction

influxdb_client_3 is a Python module that provides a simple and convenient way to interact with InfluxDB 3.0. This module supports both writing data to InfluxDB and querying data using the Flight client, which allows you to execute SQL and InfluxQL queries on InfluxDB 3.0.

We offer a "Getting Started: InfluxDB 3.0 Python Client Library" video that goes over how to use the library and goes over the examples.

Dependencies

  • pyarrow (automatically installed)
  • pandas (optional)

Installation

You can install 'influxdb3-python' using pip:

pip install influxdb3-python

Note: This does not include Pandas support. If you would like to use key features such as to_pandas() and write_file() you will need to install pandas separately.

Note: Please make sure you are using 3.6 or above. For the best performance use 3.11+

Usage

One of the easiest ways to get started is to checkout the "Pokemon Trainer Cookbook". This scenario takes you through the basics of both the client library and Pyarrow.

Importing the Module

from influxdb_client_3 import InfluxDBClient3, Point

Initialization

If you are using InfluxDB Cloud, then you should note that:

  1. You will need to supply your org id, this is not necessary for InfluxDB Dedicated.
  2. Use bucket name for the database argument.
client = InfluxDBClient3(token="your-token",
                         host="your-host",
                         org="your-org",
                         database="your-database")

Writing Data

You can write data using the Point class, or supplying line protocol.

Using Points

point = Point("measurement").tag("location", "london").field("temperature", 42)
client.write(point)

Using Line Protocol

point = "measurement fieldname=0"
client.write(point)

Write from file

Users can import data from CSV, JSON, Feather, ORC, Parquet

import influxdb_client_3 as InfluxDBClient3
import pandas as pd
import numpy as np
from influxdb_client_3 import write_client_options, WritePrecision, WriteOptions, InfluxDBError


class BatchingCallback(object):

    def success(self, conf, data: str):
        print(f"Written batch: {conf}, data: {data}")

    def error(self, conf, data: str, exception: InfluxDBError):
        print(f"Cannot write batch: {conf}, data: {data} due: {exception}")

    def retry(self, conf, data: str, exception: InfluxDBError):
        print(f"Retryable error occurs for batch: {conf}, data: {data} retry: {exception}")

callback = BatchingCallback()

write_options = WriteOptions(batch_size=500,
                                        flush_interval=10_000,
                                        jitter_interval=2_000,
                                        retry_interval=5_000,
                                        max_retries=5,
                                        max_retry_delay=30_000,
                                        exponential_base=2)

wco = write_client_options(success_callback=callback.success,
                          error_callback=callback.error,
                          retry_callback=callback.retry,
                          write_options=write_options
                        )

with  InfluxDBClient3.InfluxDBClient3(
    token="INSERT_TOKEN",
    host="eu-central-1-1.aws.cloud2.influxdata.com",
    org="6a841c0c08328fb1",
    database="python", write_client_options=wco) as client:


    client.write_file(
        file='./out.csv',
        timestamp_column='time', tag_columns=["provider", "machineID"])

    client.write_file(
        file='./out.json',
        timestamp_column='time', tag_columns=["provider", "machineID"], date_unit='ns' )

Pandas DF

client._write_api.write(bucket="pokemon-codex", record=pd_df, data_frame_measurement_name='caught', data_frame_tag_columns=['trainer', 'id', 'num'], data_frame_timestamp_column='timestamp')

Polars DF

client._write_api.write(bucket="pokemon-codex", record=pl_df, data_frame_measurement_name='caught', data_frame_tag_columns=['trainer', 'id', 'num'], data_frame_timestamp_column='timestamp')

Querying

Querying with SQL

query = "select * from measurement"
reader = client.query(query=query, language="sql")
table = reader.read_all()
print(table.to_pandas().to_markdown())

Querying with influxql

query = "select * from measurement"
reader = client.query(query=query, language="influxql")
table = reader.read_all()
print(table.to_pandas().to_markdown())

Windows Users

Currently, Windows users require an extra installation when querying via Flight natively. This is due to the fact gRPC cannot locate Windows root certificates. To work around this please follow these steps: Install certifi

pip install certifi

Next include certifi within the flight client options:

import influxdb_client_3 as InfluxDBClient3
import pandas as pd
import numpy as np
from influxdb_client_3 import flight_client_options
import certifi

fh = open(certifi.where(), "r")
cert = fh.read()
fh.close()


client = InfluxDBClient3.InfluxDBClient3(
    token="",
    host="b0c7cce5-8dbc-428e-98c6-7f996fb96467.a.influxdb.io",
    org="6a841c0c08328fb1",
    database="flightdemo",
    flight_client_options=flight_client_options(
        tls_root_certs=cert))


table = client.query(
    query="SELECT * FROM flight WHERE time > now() - 4h",
    language="influxql")

print(table.to_pandas())

You may also include your own root certificate via this manor aswell.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

influxdb3_python-0.9.0.tar.gz (69.4 kB view details)

Uploaded Source

Built Distribution

influxdb3_python-0.9.0-py3-none-any.whl (81.1 kB view details)

Uploaded Python 3

File details

Details for the file influxdb3_python-0.9.0.tar.gz.

File metadata

  • Download URL: influxdb3_python-0.9.0.tar.gz
  • Upload date:
  • Size: 69.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.20

File hashes

Hashes for influxdb3_python-0.9.0.tar.gz
Algorithm Hash digest
SHA256 f64f36ada948c9953bd99f5ce42c1de3db2a4db6f84837899f34a8c05f17a44f
MD5 04317309f9324e03ec661c8b12f1a3e9
BLAKE2b-256 454f33c2883a89e74df1066e295fe138d4315a26312ea617096ec146ad504bb8

See more details on using hashes here.

File details

Details for the file influxdb3_python-0.9.0-py3-none-any.whl.

File metadata

File hashes

Hashes for influxdb3_python-0.9.0-py3-none-any.whl
Algorithm Hash digest
SHA256 10dc9c80eccc49b3dc3f2048ada7e26b23539f27efd5c98c0e69b784ffeb7b5e
MD5 8ff7d7b0f2f5762e2868cfb20019e54a
BLAKE2b-256 a7a4af8337f11201292cc2e0aecac9145bc747bd4b4c7584967b3dcc008adbb4

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page