Python dependency injection framework.
Project description
python-inject
Dependency injection the python way, the good way.
Key features
- Fast.
- Thread-safe.
- Simple to use.
- Does not steal class constructors.
- Does not try to manage your application object graph.
- Transparently integrates into tests.
- Autoparams leveraging type annotations.
- Supports type hinting in Python 3.5+.
- Supports Python 3.9+ (
v5.*
), 3.5-3.8 (v4.*
) and Python 2.7–3.5 (v3.*
).
Python Support
Python | Inject Version |
---|---|
3.9+ | 5.0+ |
3.6-3.8 | 4.1+, < 5.0 |
3.5 | 4.0 |
< 3.5 | 3.* |
Installation
Use pip to install the lastest version:
pip install inject
Autoparams example
@inject.autoparams
returns a decorator which automatically injects arguments into a function
that uses type annotations. This is supported only in Python >= 3.5.
@inject.autoparams()
def refresh_cache(cache: RedisCache, db: DbInterface):
pass
There is an option to specify which arguments we want to inject without attempts of injecting everything:
@inject.autoparams('cache', 'db')
def sign_up(name, email, cache: RedisCache, db: DbInterface):
pass
Step-by-step example
# Import the inject module.
import inject
# `inject.instance` requests dependencies from the injector.
def foo(bar):
cache = inject.instance(Cache)
cache.save('bar', bar)
# `inject.params` injects dependencies as keyword arguments or positional argument.
# Also you can use @inject.autoparams in Python 3.5, see the example above.
@inject.params(cache=Cache, user=CurrentUser)
def baz(foo, cache=None, user=None):
cache.save('foo', foo, user)
# this can be called in different ways:
# with injected arguments
baz('foo')
# with positional arguments
baz('foo', my_cache)
# with keyword arguments
baz('foo', my_cache, user=current_user)
# `inject.param` is deprecated, use `inject.params` instead.
@inject.param('cache', Cache)
def bar(foo, cache=None):
cache.save('foo', foo)
# `inject.attr` creates properties (descriptors) which request dependencies on access.
class User(object):
cache = inject.attr(Cache)
def __init__(self, id):
self.id = id
def save(self):
self.cache.save('users', self)
@classmethod
def load(cls, id):
return cls.cache.load('users', id)
# Create an optional configuration.
def my_config(binder):
binder.bind(Cache, RedisCache('localhost:1234'))
# Configure a shared injector.
inject.configure(my_config)
# Instantiate User as a normal class. Its `cache` dependency is injected when accessed.
user = User(10)
user.save()
# Call the functions, the dependencies are automatically injected.
foo('Hello')
bar('world')
Usage with Django
Django can load some modules multiple times which can lead to
InjectorException: Injector is already configured
. You can use configure(once=True)
which
is guaranteed to run only once when the injector is absent:
import inject
inject.configure(my_config, once=True)
Testing
In tests use inject.configure(callable, clear=True)
to create a new injector on setup,
and optionally inject.clear()
to clean up on tear down:
class MyTest(unittest.TestCase):
def setUp(self):
inject.configure(lambda binder: binder
.bind(Cache, MockCache()) \
.bind(Validator, TestValidator()),
clear=True)
def tearDown(self):
inject.clear()
Composable configurations
You can reuse configurations and override already registered dependencies to fit the needs in different environments or specific tests.
def base_config(binder):
# ... more dependencies registered here
binder.bind(Validator, RealValidator())
binder.bind(Cache, RedisCache('localhost:1234'))
def tests_config(binder):
# reuse existing configuration
binder.install(base_config)
# override only certain dependencies
binder.bind(Validator, TestValidator())
binder.bind(Cache, MockCache())
inject.configure(tests_config, allow_override=True, clear=True)
Thread-safety
After configuration the injector is thread-safe and can be safely reused by multiple threads.
Binding types
Instance bindings always return the same instance:
redis = RedisCache(address='localhost:1234')
def config(binder):
binder.bind(Cache, redis)
Constructor bindings create a singleton on injection:
def config(binder):
# Creates a redis cache singleton on first injection.
binder.bind_to_constructor(Cache, lambda: RedisCache(address='localhost:1234'))
Provider bindings call the provider on injection:
def get_my_thread_local_cache():
pass
def config(binder):
# Executes the provider on each injection.
binder.bind_to_provider(Cache, get_my_thread_local_cache)
Runtime bindings automatically create singletons on injection, require no configuration.
For example, only the Config
class binding is present, other bindings are runtime:
class Config(object):
pass
class Cache(object):
config = inject.attr(Config)
class Db(object):
config = inject.attr(Config)
class User(object):
cache = inject.attr(Cache)
db = inject.attr(Db)
@classmethod
def load(cls, user_id):
return cls.cache.load('users', user_id) or cls.db.load('users', user_id)
inject.configure(lambda binder: binder.bind(Config, load_config_file()))
user = User.load(10)
Disabling runtime binding
Sometimes runtime binding leads to unexpected behaviour. Say if you forget
to bind an instance to a class, inject
will try to implicitly instantiate it.
If an instance is unintentionally created with default arguments it may lead to
hard-to-debug bugs. To disable runtime binding and make sure that only
explicitly bound instances are injected, pass bind_in_runtime=False
to inject.configure
.
In this case inject
immediately raises InjectorException
when the code
tries to get an unbound instance.
Keys
It is possible to use any hashable object as a binding key. For example:
import inject
inject.configure(lambda binder: \
binder.bind('host', 'localhost') \
binder.bind('port', 1234))
Why no scopes?
I've used Guice and Spring in Java for a lot of years, and I don't like their scopes.
python-inject
by default creates objects as singletons. It does not need a prototype scope
as in Spring or NO_SCOPE as in Guice because python-inject
does not steal your class
constructors. Create instances the way you like and then inject dependencies into them.
Other scopes such as a request scope or a session scope are fragile, introduce high coupling,
and are difficult to test. In python-inject
write custom providers which can be thread-local,
request-local, etc.
For example, a thread-local current user provider:
import inject
import threading
# Given a user class.
class User(object):
pass
# Create a thread-local current user storage.
_LOCAL = threading.local()
def get_current_user():
return getattr(_LOCAL, 'user', None)
def set_current_user(user):
_LOCAL.user = user
# Bind User to a custom provider.
inject.configure(lambda binder: binder.bind_to_provider(User, get_current_user))
# Inject the current user.
@inject.params(user=User)
def foo(user):
pass
Links
License
Apache License 2.0
Contributors
- Ivan Korobkov @ivankorobkov
- Jaime Wyant @jaimewyant
- Sebastian Buczyński @Enforcer
- Oleksandr Fedorov @Fedorof
- cselvaraj @cselvaraj
- 陆雨晴 @SixExtreme
- Andrew William Borba @andrewborba10
- jdmeyer3 @jdmeyer3
- Alex Grover @ajgrover
- Harro van der Kroft @wisepotato
- Samiur Rahman @samiur
- 45deg @45deg
- Alexander Nicholas Costas @ancostas
- Dmitry Balabka @dbalabka
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file inject2-5.2.1.tar.gz
.
File metadata
- Download URL: inject2-5.2.1.tar.gz
- Upload date:
- Size: 19.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fc4f7ba6d110f7791440d495a24fc2de056c28b4440d022f0cf170897aeded2c |
|
MD5 | 3f103b14d5a734e720deedbd8525f251 |
|
BLAKE2b-256 | 3a6f49bcea15e44eb41dfe4cbb22b26059e3053a2fac6c5e84d5600e75027750 |
File details
Details for the file inject2-5.2.1-py2.py3-none-any.whl
.
File metadata
- Download URL: inject2-5.2.1-py2.py3-none-any.whl
- Upload date:
- Size: 14.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 657559a5d99516810ebfa5209b257100fca1d8e87dcfe005066db9bec007b322 |
|
MD5 | 0ec9bc7c4185ce9d26001afd584d8c51 |
|
BLAKE2b-256 | ceb6a14aaa9236014909d038015db2aa74cf9315000cde4498655db446de9b18 |