Skip to main content

Stainless neural networks in JAX

Project description

Inox's banner

Stainless neural networks in JAX

Inox is a minimal JAX library for neural networks with an intuitive PyTorch-like syntax. As with Equinox, modules are represented as PyTrees, which enables complex architectures, easy manipulations, and functional transformations.

Inox aims to be a leaner version of Equinox by only retaining its core features: PyTrees and lifted transformations. In addition, Inox takes inspiration from other projects like NNX and Serket to provide a versatile interface. Despite the differences, Inox remains compatible with the Equinox ecosystem, and its components (modules, transformations, ...) are for the most part interchangeable with those of Equinox.

Inox means "stainless steel" in French 🔪

Installation

The inox package is available on PyPI, which means it is installable via pip.

pip install inox

Alternatively, if you need the latest features, you can install it from the repository.

pip install git+https://github.com/francois-rozet/inox

Getting started

Modules are defined with an intuitive PyTorch-like syntax,

import jax
import inox.nn as nn

init_key, data_key = jax.random.split(jax.random.key(0))

class MLP(nn.Module):
    def __init__(self, key):
        keys = jax.random.split(key, 3)

        self.l1 = nn.Linear(3, 64, key=keys[0])
        self.l2 = nn.Linear(64, 64, key=keys[1])
        self.l3 = nn.Linear(64, 3, key=keys[2])
        self.relu = nn.ReLU()

    def __call__(self, x):
        x = self.l1(x)
        x = self.l2(self.relu(x))
        x = self.l3(self.relu(x))

        return x

model = MLP(init_key)

and are compatible with JAX transformations.

X = jax.random.normal(data_key, (1024, 3))
Y = jax.numpy.sort(X, axis=-1)

@jax.jit
def loss_fn(model, x, y):
    pred = jax.vmap(model)(x)
    return jax.numpy.mean((y - pred) ** 2)

grads = jax.grad(loss_fn)(model, X, Y)

However, if a tree contains strings or boolean flags, it becomes incompatible with JAX transformations. For this reason, Inox provides lifted transformations that consider all non-array leaves as static.

model.name = 'stainless'  # not an array

@inox.jit
def loss_fn(model, x, y):
    pred = jax.vmap(model)(x)
    return jax.numpy.mean((y - pred) ** 2)

grads = inox.grad(loss_fn)(model, X, Y)

Inox also provides a partition mechanism to split the static definition of a module (structure, strings, flags, ...) from its dynamic content (parameters, indices, statistics, ...), which is convenient for updating parameters.

model.mask = jax.numpy.array([1, 0, 1])  # not a parameter

static, params, others = model.partition(nn.Parameter)

@jax.jit
def loss_fn(params, others, x, y):
    model = static(arrays, others)
    pred = jax.vmap(model)(x)
    return jax.numpy.mean((y - pred) ** 2)

grads = jax.grad(loss_fn)(params, others, X, Y)
params = jax.tree_util.tree_map(lambda p, g: p - 0.01 * g, params, grads)

model = static(params, others)

For more information, check out the documentation and tutorials at inox.readthedocs.io.

Contributing

If you have a question, an issue or would like to contribute, please read our contributing guidelines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

inox-0.6.3.tar.gz (30.8 kB view details)

Uploaded Source

Built Distribution

inox-0.6.3-py3-none-any.whl (35.5 kB view details)

Uploaded Python 3

File details

Details for the file inox-0.6.3.tar.gz.

File metadata

  • Download URL: inox-0.6.3.tar.gz
  • Upload date:
  • Size: 30.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.18

File hashes

Hashes for inox-0.6.3.tar.gz
Algorithm Hash digest
SHA256 786b5bc5f25fa9260d5f1fee17dde077dcfaf9d5fe947c1d85d56fc6f8c1f314
MD5 dc696489822b7dfc7c3fac0c5a5e5b1c
BLAKE2b-256 4fade2d4181f609c4633b220fca378eb820ad7c769b8f5c79d11fe81c2dc1383

See more details on using hashes here.

File details

Details for the file inox-0.6.3-py3-none-any.whl.

File metadata

  • Download URL: inox-0.6.3-py3-none-any.whl
  • Upload date:
  • Size: 35.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.18

File hashes

Hashes for inox-0.6.3-py3-none-any.whl
Algorithm Hash digest
SHA256 255163df6ac9ee958a516f3a8f9c6552024733ee1445dc1c2c613b09c4bf9997
MD5 32f09accf963a9eb586e74991f8f19ad
BLAKE2b-256 cb64783c4d5d8f51fc7ae53bdf44c6c68bdd2fcd7211b5dbf17834c663fb2e8d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page