InsightFace Toolkit
Project description
## Python package of insightface README
pip insightface-0.2.0 is ready now. Please update with pip install -U insightface
For insightface pip-package <= 0.1.5, we use MXNet as inference backend, please download all models from [onedrive](https://1drv.ms/u/s!AswpsDO2toNKrUy0VktHTWgIQ0bn?e=UEF7C4), and put them all under ~/.insightface/models/ directory.
Starting from insightface>=0.2, we use onnxruntime as inference backend, please download our antelope model release from [onedrive](https://1drv.ms/u/s!AswpsDO2toNKrU0ydGgDkrHPdJ3m?e=iVgZox), and put it under ~/.insightface/models/, so there’re onnx models at ~/.insightface/models/antelope/*.onnx.
The antelope model release contains ResNet100@Glint360K recognition model and SCRFD-10GF detection model. Please check deploy/test.py for detail.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file insightface-0.2.1.tar.gz
.
File metadata
- Download URL: insightface-0.2.1.tar.gz
- Upload date:
- Size: 11.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.0 pkginfo/1.4.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 06ca7d174816ce517bcdad5e723125f1e8b5b89f1711e1608c5bc2bcd97d398e |
|
MD5 | 7b8399e929ee237d350626ed8d2a494f |
|
BLAKE2b-256 | 6149945807a71996ef21ae0d53dded88b5dd7769ef2ffdf9d4e2ae0228902bfc |
File details
Details for the file insightface-0.2.1-py2.py3-none-any.whl
.
File metadata
- Download URL: insightface-0.2.1-py2.py3-none-any.whl
- Upload date:
- Size: 24.2 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.7.0 pkginfo/1.4.2 requests/2.22.0 requests-toolbelt/0.9.1 tqdm/4.42.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c18cc93de32a21b6bde2990214fc23a66d39eeccb438ef11b39fae21e519f6ac |
|
MD5 | f0383cdce9d81e9866ee29f48dfb3f72 |
|
BLAKE2b-256 | ee1e6395bbe0db665f187c8e49266cda54fcf661f182192370d409423e4943e4 |