Efficient PDF analysis, text extraction, preprocessing, and pattern recognition with customizable configurations and utilities.
Project description
Extractlib
This is a Python package that provides a set of tools and utilities for processing and analyzing PDF documents. It includes functionality for extracting text and tables from PDFs, cleaning and preprocessing text data, and analyzing content for keywords and patterns. The package also provides a number of configuration options for customizing the behavior of the tools and utilities, making it flexible and easy to use in a variety of different contexts. Whether you need to extract data from PDF documents for data analysis, or analyze PDF content for specific keywords or patterns, this package provides the tools you need to get the job done quickly and efficiently.
Dependency Overview
Python Dependency Install
This project leverages packages
nltk == 3.8.1 PyMuPDF == 1.21.1 camelot-py == 0.11.0 opencv-python == 4.7.0.72 ghostscript == 0.7
manually install supporting binaries
camelot dependencies
Ubuntu
$ apt install ghostscript python3-tk
MacOS
$ brew install ghostscript tcl-tk
windows dependency installations
- Install ghostscript: https://ghostscript.com/releases/gsdnld.html
- Install Tinker: https://platform.activestate.com/activestate/activetcl-8.6/auto-fork?_ga=2.93217438.2024444162.1679060315-1994225326.1678735799
Configuration
- configuration file should be placed in the root of the project and named 'extractlib.config.json'
Example 'extractlib.config.json' File
this file should be located in the root of your project
{ "std_out_logging": true, "supported_file_types": [".pdf"], "invalid_content_regexs": ["X{2,}"], "stop_words": [ "na", "dependent", "address", "plans", "network", "nonnetwork", "additional", "covered" ], "keywords": { "dental": 5, "vision": 5, "life": 5, "disability": 5 }, "keyword_synonyms": { "dental": ["orthodontic", "Endo", "Perio", "Oral"], "vision": ["eye", "vision", "lens", "lenses", "contact", "contacts"], "life": [ "accident", "critical", "illness", "accidental", "dismember", "AD&D" ], "disability": [] }, "word_min_length": 3 }
access config variables
from extractlib.settings import config print(json.dump(config.config_raw, indent=4))
Example implementation
from extractlib.document.process import process_document import json def main(file: str): result = process_document(file, exclude_pages=[2,3], use_multithreading=False, split_pages_output_dir='./output', delete_split_pages=False) # Save the HTML content to a temporary file with open('temp.json', 'w') as f: json.dump(result, f, indent=4) if __name__ == '__main__': # get working directory import os target_dir = os.path.dirname(os.path.abspath(__file__)) main(f'{target_dir}/_testdata/PDF.pdf')
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for insights_extractor-0.1.1-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8450a82153c545cc26dca8c36bb10b51afa4d3cb289943d2febe1e36d17157c4 |
|
MD5 | 7eccd118c21117525c4fa648d3ab539f |
|
BLAKE2b-256 | a40e667204c1e29d4deccd6a414cc4996684f44ed58b63ffb320eaee19c5df8c |