This is a pre-production deployment of Warehouse, however changes made here WILL affect the production instance of PyPI.
Latest Version Dependencies status unknown Test status unknown Test coverage unknown
Project Description

A Python package for reading, storing, & analyzing data from Public Data APIs.

It provides modules for reading & parsing data from URL, storing data using a wrapper for SQLite, and performing some statistics.


Download and unzip the package then run the following command:

python install

Web Data

WebData class for reading data returned from URL, and parsing JSON to dictionary object.

import insights
data = insights.webdata.WebData("")

SQLite Database

Database class acts like a wrapper SQLite. It provides variety of methods that hides complexity.

import insights
db = insights.database.Database()
d = dict(
         id     = dict(type='INTEGER', auto = True, primary = True),
         name   = dict(type='TEXT', not_null = True),
         age    = dict(type='INT')

# create table
db.create('users', d)

# insert rows
db.insert('users', dict(name = 'omar', age = 22))
db.insert('users', dict(name = 'alex', age = 23))
db.insert('users', dict(name = 'peter', age = 21))

# last inserted id

# print users
db.getById('users', '1').printResult()

# counting
print(db.count('users', dict(age='22')))

# delete
db.deleteById('users', '2')

# update
db.updateById('users', dict(name='ALEX', age = 25), 2)

# number of affected rows by last query

# close connection


Stats class for performing some simple statistics on a list of values.

import insights
lst     = [6, 3 , 11 , 16 , 8 , 6 , 15 , 7]
Stats   = insights.stats.Stats

print("Average\t", Stats.average(lst))
print("MD\t", Stats.meanDeviation(lst))
print("Count 7\t", Stats.count(lst, 7))
print("Length\t", Stats.length(lst))
print("Max\t", Stats.max(lst))
print("Min\t", Stats.min(lst))
print("Range\t", Stats.range(lst))
print("Sum\t", Stats.sum(lst))
print("Sort\t", Stats.sort(lst))
print("Variance", Stats.variance(lst))
print("SD\t", Stats.standardDeviation(lst))
print("Median\t", Stats.median(lst))

Trade Application

Trade class is an application that uses insights package to retrieve data about Exports & Imports grouped by Commodity.

It fetches the data(JSON string) from URL, saves it to SQLite database, and perform some statistics.

The generated table will look like(doesn’t include all data, nor all statistics):

========  =======  =======  =======  =======
Date      E::Oil   I::Oil   E::Tea   I::Tea
========  =======  =======  =======  =======
2013      12006.2  12495.7  14.0     239.4
2012      11225.0  11774.5  12.7     180.1
........  .......  .......  .......  .......
average   10064.2  2183.83  7.72     151.14
variance  9037043  1077840  22.89    2585.42
SD        3006.17  3283.05  4.78     50.85
max       14472.6  12495.7  14.7     239.4
min       3910.3   2549.7   2.0      88.1
========  =======  =======  =======  =======

NOTE Trade application is inside app/ folder.


I’ve written this package in my free time during my studies. If you find it useful, please support the project by spreading the word.


Contribute by creating new issues, sending pull requests on Github or you can send an email at:


Built under MIT license.

Release History

Release History


This version

History Node

TODO: Figure out how to actually get changelog content.

Changelog content for this version goes here.

Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.

Show More

Download Files

Download Files

TODO: Brief introduction on what you do with files - including link to relevant help section.

File Name & Checksum SHA256 Checksum Help Version File Type Upload Date (14.7 kB) Copy SHA256 Checksum SHA256 Source Jan 17, 2016

Supported By

WebFaction WebFaction Technical Writing Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS HPE HPE Development Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Rackspace Rackspace Cloud Servers DreamHost DreamHost Log Hosting