Skip to main content

Fast English word segmentation

Project description

Cover logo

Instant Segment: fast English word segmentation in Rust

Documentation Crates.io PyPI Build status License: Apache 2.0

Instant Segment is a fast Apache-2.0 library for English word segmentation. It is based on the Python wordsegment project written by Grant Jenks, which is in turn based on code from Peter Norvig's chapter Natural Language Corpus Data from the book Beautiful Data (Segaran and Hammerbacher, 2009).

The data files in this repository are derived from the Google Web Trillion Word Corpus, as described by Thorsten Brants and Alex Franz, and distributed by the Linguistic Data Consortium. Note that this data "may only be used for linguistic education and research", so for any other usage you should acquire a different data set.

For the microbenchmark included in this repository, Instant Segment is ~100x faster than the Python implementation. The API has been carefully constructed so that multiple segmentations can share the underlying state to allow parallel usage.

How it works

Instant Segment works by segmenting a string into words by selecting the splits with the highest probability given a corpus of words and their occurrences.

For instance, provided that choose and spain occur more frequently than chooses and pain, and that the pair choose spain occurs more frequently than chooses pain, Instant Segment can help identify the domain choosespain.com as ChooseSpain.com which more likely matches user intent.

We use this technique at Instant Domain Search to help our users find relevant domains.

Using the library

Python (>= 3.9)

pip install instant-segment

Rust

[dependencies]
instant-segment = "0.8.1"

Examples

The following examples expect unigrams and bigrams to exist. See the examples (Rust, Python) to see how to construct these objects.

import instant_segment

segmenter = instant_segment.Segmenter(unigrams, bigrams)
search = instant_segment.Search()
segmenter.segment("instantdomainsearch", search)
print([word for word in search])

--> ['instant', 'domain', 'search']
use instant_segment::{Search, Segmenter};
use std::collections::HashMap;

let segmenter = Segmenter::from_maps(unigrams, bigrams);
let mut search = Search::default();
let words = segmenter
    .segment("instantdomainsearch", &mut search)
    .unwrap();
println!("{:?}", words.collect::<Vec<&str>>())

--> ["instant", "domain", "search"]

Check out the tests for more thorough examples: Rust, Python

Testing

To run the tests run the following:

cargo t -p instant-segment --all-features

You can also test the Python bindings with:

make test-python

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

instant_segment-0.1.3-cp39-cp39-macosx_10_7_x86_64.whl (192.6 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

File details

Details for the file instant_segment-0.1.3-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for instant_segment-0.1.3-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 290c464cdc3a902c18ad00314acdbc3ca35a7363f43059c6f975da0140166288
MD5 ef13b226ea06f88c899697bf01787b61
BLAKE2b-256 1b7bc38dc4b3e4a103f1b09b27bfd737fe9a1a62fc7b60ff6eea7166504ae0ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page