An easy and convenient Deep Learning pipeline for image segmentation and classification
Project description
# InstandDL: An easy and convenient deep learning pipeline for image segmentation and classification
[![Build Status](https://travis-ci.com/marrlab/InstantDL.svg?branch=develop-test)](https://travis-ci.com/marrlab/InstantDL)
InstantDL enables experts and non-experts to use state-of-the art deep learning methods on biomedical image data. InstantDL offers the four most common tasks in medical image processing: Semantic segmentation, instance segmentation, pixel-wise regression and classification. For more in depth discussion on the methods, as well as comparing the results and bechmarks using this package, please refer to our preprint on bioRxiv [here](https://doi.org/10.1101/2020.06.22.164103)
<p align=”center”> <img src=”docs/Instand_DL_farbig_RGB.png” width=”400” /> </p>
## Documentation
For documentation please refere to [docs](docs)
For a short video introducing InstantDL please see:
<a href=”http://www.youtube.com/watch?v=Wy4wlEyE2fA”> <p align=”center”> <img href=”InstantDL” src=”http://img.youtube.com/vi/Wy4wlEyE2fA/0.jpg” width=”500” align=”center”> </p> <a>
## Contributing
We are happy about any contributions. For any suggested changes, please send a pull request to the develop branch.
## Citation
If you use InstantDL, please cite this paper:
` @article { author = {Waibel, Dominik Jens Elias and Shetab Boushehri, Sayedali and Marr, Carsten}, title = {InstantDL - An easy-to-use deep learning pipeline for image segmentation and classification}, year = {2021}, doi = {10.1186/s12859-021-04037-3}, URL = {https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04037-3#article-info}, eprint = {https://doi.org/10.1186/s12859-021-04037-3}, journal = {BMC Bioinformatics} } `
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file instantdl-1.0.5.tar.gz
.
File metadata
- Download URL: instantdl-1.0.5.tar.gz
- Upload date:
- Size: 90.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 910061794cecc19584106f1f3674285b3c37469c771d9c471c397fb03313664d |
|
MD5 | 18043801dbfa0b91854a1b0e5bbffa5f |
|
BLAKE2b-256 | 90f003d68df0c26effe537543e6b807de6da2c81c92a180517b336e08f7a1581 |
File details
Details for the file instantdl-1.0.5-py3-none-any.whl
.
File metadata
- Download URL: instantdl-1.0.5-py3-none-any.whl
- Upload date:
- Size: 103.4 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.1 importlib_metadata/3.10.0 pkginfo/1.6.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ff09301f3e0b6f3dafb7e6b0c65fcb2c682006905af1beda3a5342baff85859 |
|
MD5 | 5b9d914225158a57b70f19015c24a8ee |
|
BLAKE2b-256 | e3fe0f6d9456dc2177ae57a88c478f02338022ad9d07975bb3b1bd364dd89202 |