Skip to main content

Inferencial Stadistics library

Project description

Instpy - Inferencial Stadistics Python


license

What is Instpy?

instpy is a stadistic library which permit you analyze measures obtaining main stadistical results like

  • Histograms
  • Qqplots
  • Levene test
  • Shapiro-Wilk test
  • Parametric or Non parametric test.
    With this library you can test multiple or single measures, check if data verify normality condition or not and test measures against stadistic tests. Instpy has class where you can instance an object with following attributes:
#Creating an InferencialStats object
InferencialStats(measures,alpha,is_paired,mean)
measures: list lists of data (int or float)
alpha (Optional): Significance level (float) E.g: 0.05 or 0.01
is_paired (Optional) : bool flag to declare your measures as paired or non paired data
mean (Optional): Scalar value to test against single measure

Methods

The main method of this library.

inferencial_statistics()

It executes an study about its attributes following next workflow

  • ¿Single or multiple measures?
  • Obtain [Histogram , Qqplot , Shapiro-Wilk test results] of every measure
  • Perform Levene Test
  • Perform Parametric or Non-parametric test depending on whether measures follow
    normal distribution or non normal distribution

If you want to get some additional features about your analysis you can try with these methods

crit_diff

Display a graphical analisys comapring critical differences from each measures

InferencialStats.crit_diff()

show_hists

Plot a plotly.graph_object.Figure with all measure histograms

InferencialStats.show_hists();

show_qqplots

Plot a plotly.graph_object.Figure with all measure qqplots

InferencialStats.show_qqplots();

get_swtests

Return Pana.DataFrame with Shapiro-Wilk test results confirming if they follow or not a normal distribution

InferencialStats.get_swtests();

One method that is not vinculate with an InferencialStats object but library Instpy

get_ranks

Get ranks of input measures

InferencialStats.get_ranks(measures);

Installation

#With pip
pip install instpy

Example

import instpy
#Lets create some measures such as normal or uniform data distribution
x = np.random.normal(size=100).tolist()
y = np.random.normal(size=100).tolist()
t = np.random.normal(size=100).tolist()
z = np.random.normal(size=100).tolist()
#---------------------------------------------------------------------
xx = np.random.normal(size=100).tolist()
yx = np.random.normal(size=104).tolist()
tx = np.random.normal(size=110).tolist()
zx = np.random.normal(size=108).tolist()
#---------------------------------------------------------------------

Single measure case

#Create measure parameter
## Single data -------------
single_measure=[x]

res=InferecialStats(single_measure,is_paired=True,mean=80)
#Now lets analyze measure
res.inferencial_statistics()

#In this case it will only one plot
res.show_hists()
res.show_qqplots()
print(res.get_swtests())
print(res.get_t_res())

Multiple measure case

Normal measures

## Multiple data
data_measure=[x,y,z,t]

res=InferecialStats(data_measure,is_paired=True,alpha=0.05)
res.inferencial_statistics()
#-------Results-------
# [x]-->Histograms
# [x]-->Qqplot
# [x]-->Shapiro-Wilk test
# [x]-->Levene Test
# [x]-->Normality Condition
# [x]-->Parametric Test
#      |
#      |- One - Way ANOVA Repeated Measures
# [ ]-->Non Parametric Test

Non normal measures and unpaired

## Multiple data

data_measure=[xx,yx,zx,tx]

res=InferecialStats(data_measure,is_paired=False,alpha=0.05)
res.inferencial_statistics()
#-------Results-------
# [x]-->Histograms
# [x]-->Qqplot
# [x]-->Shapiro-Wilk test
# [x]-->Levene Test
# [ ]-->Normality Condition
# [ ]-->Parametric Test
# [x]-->Non Parametric Test
#      |
#      |- Kruskal

Author - Contact

Carlos Enrique - calollikito12000@gmail.com

LICENSE

MIT

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

instpy-0.0.1.tar.gz (11.4 kB view details)

Uploaded Source

Built Distribution

instpy-0.0.1-py3-none-any.whl (9.7 kB view details)

Uploaded Python 3

File details

Details for the file instpy-0.0.1.tar.gz.

File metadata

  • Download URL: instpy-0.0.1.tar.gz
  • Upload date:
  • Size: 11.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for instpy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 a9df8c241beb72cec6d61534dce0eeed39e3078e275756bef108e13a3e742cef
MD5 cb6e26391e2552fd5ec8862483626565
BLAKE2b-256 335f0080f58ba7c69899fc146cb1bbc5d8334cfde65b44c09898d61ed490725b

See more details on using hashes here.

File details

Details for the file instpy-0.0.1-py3-none-any.whl.

File metadata

  • Download URL: instpy-0.0.1-py3-none-any.whl
  • Upload date:
  • Size: 9.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.8.5

File hashes

Hashes for instpy-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 254b88c457ac34ea28eba6cf0109a4f42937e8f5a591abb7187ce0854d7ce68c
MD5 8b9c5b7c016815b6c4a2acb33f6c52ac
BLAKE2b-256 5345aac99481e2798d47b991e05e9e19502b19f68175b883f1a81b0ae2a2c0a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page