CLI for interacting with InstructLab
Project description
InstructLab 🐶 (ilab
)
📖 Contents
- Welcome to the InstructLab CLI
- ❓ What is
ilab
- 📋 Requirements
- ✅ Getting started
- 💻 Creating new knowledge or skills and training the model
- 📣 Chat with the new model (not optional this time)
- 🚀 Upgrade InstructLab to latest version
- 🎁 Submit your new knowledge or skills
- 📬 Contributing
Welcome to the InstructLab CLI
InstructLab 🐶 uses a novel synthetic data-based alignment tuning method for Large Language Models (LLMs.) The "lab" in InstructLab 🐶 stands for Large-Scale Alignment for ChatBots [1].
[1] Shivchander Sudalairaj*, Abhishek Bhandwaldar*, Aldo Pareja*, Kai Xu, David D. Cox, Akash Srivastava*. "LAB: Large-Scale Alignment for ChatBots", arXiv preprint arXiv: 2403.01081, 2024. (* denotes equal contributions)
❓ What is ilab
ilab
is a Command-Line Interface (CLI) tool that allows you to perform the following actions:
- Download a pre-trained Large Language Model (LLM).
- Chat with the LLM.
To add new knowledge and skills to the pre-trained LLM, add information to the companion taxonomy repository.
After you have added knowledge and skills to the taxonomy, you can perform the following actions:
- Use
ilab
to generate new synthetic training data based on the changes in your localtaxonomy
repository. - Re-train the LLM with the new training data.
- Chat with the re-trained LLM to see the results.
graph TD;
download-->chat
chat[Chat with the LLM]-->add
add[Add new knowledge<br/>or skill to taxonomy]-->generate[generate new<br/>synthetic training data]
generate-->train
train[Re-train]-->|Chat with<br/>the re-trained LLM<br/>to see the results|chat
For an overview of the full workflow, see the workflow diagram.
[!IMPORTANT] We have optimized InstructLab so that community members with commodity hardware can perform these steps. However, running InstructLab on a laptop will provide a low-fidelity approximation of synthetic data generation (using the
ilab data generate
command) and model instruction tuning (using theilab model train
command, which uses QLoRA). To achieve higher quality, use more sophisticated hardware and configure InstructLab to use a larger teacher model such as Mixtral.
📋 Requirements
- 🍎 Apple M1/M2/M3 Mac or 🐧 Linux system (tested on Fedora). We anticipate support for more operating systems in the future.
- C++ compiler
- Python 3.10 or Python 3.11
- Approximately 60GB disk space (entire process)
NOTE: Python 3.12 is currently not supported, because some dependencies don't work on Python 3.12, yet.
NOTE: When installing the
ilab
CLI on macOS, you may have to run thexcode-select --install
command, installing the required packages previously listed.
✅ Getting started
🧰 Installing ilab
-
When installing on Fedora Linux, install C++, Python 3.10 or 3.11, and other necessary tools by running the following command:
sudo dnf install gcc gcc-c++ make git python3.11 python3.11-devel
If you are running on macOS, this installation is not necessary and you can begin your process with the following step.
-
Create a new directory called
instructlab
to store the files theilab
CLI needs when running andcd
into the directory by running the following command:mkdir instructlab cd instructlab
NOTE: The following steps in this document use Python venv for virtual environments. However, if you use another tool such as pyenv or Conda Miniforge for managing Python environments on your machine continue to use that tool instead. Otherwise, you may have issues with packages that are installed but not found in
venv
. -
There are a few ways you can locally install the
ilab
CLI. Select your preferred installation method from the following instructions. You can then installilab
and activate yourvenv
environment.NOTE: ⏳ The
python3
binary shown in the following steps is the Python version that you installed in the above step. The command can also bepython3.11
orpython3.10
instead ofpython3
. You can check Python's version bypython3 -V
.NOTE: ⏳
pip install
may take some time, depending on your internet connection. In case installation fails with errorunsupported instruction `vpdpbusd'
, append-C cmake.args="-DLLAMA_NATIVE=off"
topip install
command.See the GPU acceleration documentation for how to to enable hardware acceleration for interaction and training on AMD ROCm, Apple Metal Performance Shaders (MPS), and Nvidia CUDA.
Install using PyTorch without CUDA bindings and no GPU acceleration
python3 -m venv --upgrade-deps venv source venv/bin/activate pip install instructlab
NOTE: Additional Build Argument for Intel Macs
If you have an Mac with an Intel CPU, you must add a prefix of
CMAKE_ARGS="-DLLAMA_METAL=off"
to thepip install
command to ensure that the build is done without Apple M-series GPU support.(venv) $ CMAKE_ARGS="-DLLAMA_METAL=off" pip install ...
Install with AMD ROCm
python3 -m venv --upgrade-deps venv source venv/bin/activate pip cache remove llama_cpp_python pip install 'instructlab[rocm]' \ --extra-index-url https://download.pytorch.org/whl/rocm6.0 \ -C cmake.args="-DLLAMA_HIPBLAS=on" \ -C cmake.args="-DAMDGPU_TARGETS=all" \ -C cmake.args="-DCMAKE_C_COMPILER=/opt/rocm/llvm/bin/clang" \ -C cmake.args="-DCMAKE_CXX_COMPILER=/opt/rocm/llvm/bin/clang++" \ -C cmake.args="-DCMAKE_PREFIX_PATH=/opt/rocm" \ -C cmake.args="-DLLAMA_NATIVE=off"
On Fedora 40+, use
-DCMAKE_C_COMPILER=clang-17
and-DCMAKE_CXX_COMPILER=clang++-17
.Install with Apple Metal on M1/M2/M3 Macs
NOTE: Make sure your system Python build is
Mach-O 64-bit executable arm64
by usingfile -b $(command -v python)
, or if your system is setup with pyenv by using thefile -b $(pyenv which python)
command.NOTE: Also, ensure that both
python3 -c 'import platform; print(platform.machine())'
andarch
returnarm64
. Ifarch
returnsi386
orpython3
returnsx86_64
, it means your terminal or Python is running in Intel emulation mode, which isn't optimized for Apple Silicon. This is especially important if you have synced data from an Intel-based Mac to an Apple Silicon Mac (M1/M2/M3), as you may need to review and update your environment, especially tools likeHomebrew
orBash
that were previously installed under Intel.python3 -m venv --upgrade-deps venv source venv/bin/activate pip cache remove llama_cpp_python pip install 'instructlab[mps]'
Install with Nvidia CUDA
For the best CUDA experience, installing vLLM is necessary to serve Safetensors format models.
python3 -m venv --upgrade-deps venv source venv/bin/activate pip cache remove llama_cpp_python pip install 'instructlab[cuda]' \ -C cmake.args="-DLLAMA_CUDA=on" \ -C cmake.args="-DLLAMA_NATIVE=off" pip install vllm@git+https://github.com/opendatahub-io/vllm@2024.08.01
-
From your
venv
environment, verifyilab
is installed correctly, by running theilab
command.ilab
Example output of the
ilab
command(venv) $ ilab Usage: ilab [OPTIONS] COMMAND [ARGS]... CLI for interacting with InstructLab. If this is your first time running InstructLab, it's best to start with `ilab config init` to create the environment. Options: --config PATH Path to a configuration file. [default: /home/user/.config/instructlab/config.yaml] -v, --verbose Enable debug logging (repeat for even more verbosity) --version Show the version and exit. --help Show this message and exit. Commands: config Command Group for Interacting with the Config of InstructLab. data Command Group for Interacting with the Data generated by... model Command Group for Interacting with the Models in InstructLab. system Command group for all system-related command calls taxonomy Command Group for Interacting with the Taxonomy of InstructLab. Aliases: chat model chat convert model convert diff taxonomy diff download model download evaluate model evaluate generate data generate init config init list model model_list serve model serve sysinfo system info test model test train model train
IMPORTANT Every
ilab
command needs to be run from within your Python virtual environment. You can enter the Python environment by running thesource venv/bin/activate
command. -
Optional: You can enable tab completion for the
ilab
command.Bash (version 4.4 or newer)
Enable tab completion in
bash
with the following command:eval "$(_ILAB_COMPLETE=bash_source ilab)"
To have this enabled automatically every time you open a new shell, you can save the completion script and source it from
~/.bashrc
:_ILAB_COMPLETE=bash_source ilab > ~/.ilab-complete.bash echo ". ~/.ilab-complete.bash" >> ~/.bashrc
Zsh
Enable tab completion in
zsh
with the following command:eval "$(_ILAB_COMPLETE=zsh_source ilab)"
To have this enabled automatically every time you open a new shell, you can save the completion script and source it from
~/.zshrc
:_ILAB_COMPLETE=zsh_source ilab > ~/.ilab-complete.zsh echo ". ~/.ilab-complete.zsh" >> ~/.zshrc
Fish
Enable tab completion in
fish
with the following command:_ILAB_COMPLETE=fish_source ilab | source
To have this enabled automatically every time you open a new shell, you can save the completion script and source it from
~/.bashrc
:_ILAB_COMPLETE=fish_source ilab > ~/.config/fish/completions/ilab.fish
🏗️ Initialize ilab
-
Initialize
ilab
by running the following command:ilab config init
Example output
Welcome to InstructLab CLI. This guide will help you set up your environment. Please provide the following values to initiate the environment [press Enter for defaults]: Path to taxonomy repo [taxonomy]: <ENTER>
-
When prompted by the interface, press Enter to add a new default
config.yaml
file. -
When prompted, clone the
https://github.com/instructlab/taxonomy.git
repository into the current directory by typing y.Optional: If you want to point to an existing local clone of the
taxonomy
repository, you can pass the path interactively or alternatively with the--taxonomy-path
flag.Example output after initializing
ilab
(venv) $ ilab config init Welcome to InstructLab CLI. This guide will help you set up your environment. Please provide the following values to initiate the environment [press Enter for defaults]: Path to taxonomy repo [taxonomy]: <ENTER> `taxonomy` seems to not exists or is empty. Should I clone https://github.com/instructlab/taxonomy.git for you? [y/N]: y Cloning https://github.com/instructlab/taxonomy.git...
ilab
will use the default configuration file unless otherwise specified. You can override this behavior with the--config
parameter for anyilab
command. -
When prompted, provide the path to your default model. Otherwise, the default of a quantized Merlinite model will be used - you can download this model with
ilab model download
(see below).(venv) $ ilab config init Welcome to InstructLab CLI. This guide will help you set up your environment. Please provide the following values to initiate the environment [press Enter for defaults]: Path to taxonomy repo [taxonomy]: <ENTER> `taxonomy` seems to not exists or is empty. Should I clone https://github.com/instructlab/taxonomy.git for you? [y/N]: y Cloning https://github.com/instructlab/taxonomy.git... Path to your model [/home/user/.cache/instructlab/models/merlinite-7b-lab-Q4_K_M.gguf]: <ENTER>
-
When prompted, please choose a train profile. Train profiles are GPU specific profiles that enable accelerated training behavior. If you are on MacOS or a Linux machine without a dedicated GPU, please choose
No Profile (CPU, Apple Metal, AMD ROCm)
by hitting Enter. There are various flags you can utilize with individualilab
commands that allow you to utilize your GPU if applicable.Welcome to InstructLab CLI. This guide will help you to setup your environment. Please provide the following values to initiate the environment [press Enter for defaults]: Path to taxonomy repo [/home/user/.local/share/instructlab/taxonomy]: Path to your model [/home/user/.cache/instructlab/models/merlinite-7b-lab-Q4_K_M.gguf]: Generating `/home/user/.config/instructlab/config.yaml` and `/home/user/.local/share/instructlab/internal/train_configuration/profiles`... Please choose a train profile to use. Train profiles assist with the complexity of configuring specific GPU hardware with the InstructLab Training library. You can still take advantage of hardware acceleration for training even if your hardware is not listed. [0] No profile (CPU, Apple Metal, AMD ROCm) [1] Nvidia A100/H100 x2 (A100_H100_x2.yaml) [2] Nvidia A100/H100 x4 (A100_H100_x4.yaml) [3] Nvidia A100/H100 x8 (A100_H100_x8.yaml) [4] Nvidia L40 x4 (L40_x4.yaml) [5] Nvidia L40 x8 (L40_x8.yaml) [6] Nvidia L4 x8 (L4_x8.yaml) Enter the number of your choice [hit enter for no profile] [0]: No profile selected - any hardware acceleration for training must be configured manually. Initialization completed successfully, you're ready to start using `ilab`. Enjoy!
The GPU profiles are listed by GPU type and number of GPUs present. If you happen to have a GPU configuration with a similar amount of vRAM as any of the above profiles, feel free to try them out!
ilab
directory layout after initializing your system
After running ilab config init
your directories will look like the following on a Linux system:
├─ ~/.cache/instructlab/models/ (1)
├─ ~/.local/share/instructlab/datasets (2)
├─ ~/.local/share/instructlab/taxonomy (3)
├─ ~/.local/share/instructlab/checkpoints (4)
~/.cache/instructlab/models/
: Contains all downloaded large language models, including the saved output of ones you generate with ilab.~/.local/share/instructlab/datasets/
: Contains data output from the SDG phase, built on modifications to the taxonomy repository.~/.local/share/instructlab/taxonomy/
: Contains the skill and knowledge data.~/.local/share/instructlab/checkpoints/
: Contains the output of the training process
📥 Download the model
-
Run the
ilab model download
command.ilab model download
ilab model download
downloads a compact pre-trained version of the model (~4.4G) from HuggingFace:(venv) $ ilab model download Downloading model from Hugging Face: instructlab/merlinite-7b-lab-GGUF@main to /home/user/.cache/instructlab/models... ... INFO 2024-08-01 15:05:48,464 huggingface_hub.file_download:1893: Download complete. Moving file to /home/user/.cache/instructlab/models/merlinite-7b-lab-Q4_K_M.gguf
NOTE ⏳ This command can take few minutes or immediately depending on your internet connection or model is cached. If you have issues connecting to Hugging Face, refer to the Hugging Face discussion forum for more details.
Downloading a specific model from a Hugging Face repository
-
Specify repository, model, and a Hugging Face token if necessary. More information about Hugging Face tokens can be found here
HF_TOKEN=<YOUR HUGGINGFACE TOKEN GOES HERE> ilab model download --repository=TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF --filename=mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf
Downloading an entire Hugging Face repository (Safetensors Model)
-
Specify repository, and a Hugging Face token if necessary. For example:
HF_TOKEN=<YOUR HUGGINGFACE TOKEN GOES HERE> ilab model download --repository=instructlab/granite-7b-lab
These types of models are useful for GPU-enabled systems or anyone looking to serve a model using vLLM. InstructLab provides Safetensor versions of our Granite models on HuggingFace.
Listing downloaded models
-
All downloaded models can be seen with
ilab model list
.ilab model list
Example output of
ilab model list
afterilab model download
(venv) $ ilab model list +------------------------------+---------------------+--------+ | Model Name | Last Modified | Size | +------------------------------+---------------------+--------+ | merlinite-7b-lab-Q4_K_M.gguf | 2024-08-01 15:05:48 | 4.1 GB | +------------------------------+---------------------+--------+
🍴 Serving the model
-
Serve the model by running the following command:
ilab model serve
-
Serve a non-default model (e.g. Mixtral-8x7B-Instruct-v0.1):
ilab model serve --model-path models/mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf
-
Once the model is served and ready, you'll see the following output:
(venv) $ ilab model serve INFO 2024-03-02 02:21:11,352 lab.py:201 Using model 'models/ggml-merlinite-7b-lab-Q4_K_M.gguf' with -1 gpu-layers and 4096 max context size. Starting server process After application startup complete see http://127.0.0.1:8000/docs for API. Press CTRL+C to shut down the server.
NOTE: If multiple
ilab
clients try to connect to the same InstructLab server at the same time, the 1st will connect to the server while the others will start their own temporary server. This will require additional resources on the host machine. -
Serve a non-default Safetensors model (e.g. granite-7b-lab). NOTE: this requires a GPU.
Ensure vllm is installed:
pip show vllm
If it is not, please run:
pip install vllm@git+https://github.com/opendatahub-io/vllm@2024.08.01
ilab model serve --model-path ~/.cache/instructlab/models/instructlab/granite-7b-lab
📣 Chat with the model (Optional)
Because you're serving the model in one terminal window, you will have to create a new window and re-activate your Python virtual environment to run ilab model chat
command:
source venv/bin/activate
ilab model chat
Chat with a non-default model (e.g. Mixtral-8x7B-Instruct-v0.1):
source venv/bin/activate
ilab model chat --model models/mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf
Please note that usage of --model
necessitates that the existing server has that model. If not, you must exit the server. --model
in ilab model chat
has the ability to start a server on your behalf with the specified model if one is not already running on the port.
Before you start adding new skills and knowledge to your model, you can check its baseline performance by asking it a question such as what is the capital of Canada?
.
NOTE: the model needs to be trained with the generated synthetic data to use the new skills or knowledge
(venv) $ ilab model chat
╭────────────────────────────────────────────────────────────────────────────────────────────────────────────────── system ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ Welcome to InstructLab Chat w/ GGML-MERLINITE-7B-lab-Q4_K_M (type /h for help) │
╰────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────╯
>>> what is the capital of Canada? [S][default]
╭────────────────────────────────────────────────────────────────────────────────────────────────────── ggml-merlinite-7b-lab-Q4_K_M ───────────────────────────────────────────────────────────────────────────────────────────────────────╮
│ The capital city of Canada is Ottawa. It is located in the province of Ontario, on the southern banks of the Ottawa River in the eastern portion of southern Ontario. The city serves as the political center for Canada, as it is home to │
│ Parliament Hill, which houses the House of Commons, Senate, Supreme Court, and Cabinet of Canada. Ottawa has a rich history and cultural significance, making it an essential part of Canada's identity. │
╰─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── elapsed 12.008 seconds ─╯
>>> [S][default]
💻 Creating new knowledge or skills and training the model
🎁 Contribute knowledge or compositional skills
- Contribute new knowledge or compositional skills to your local taxonomy repository.
Detailed contribution instructions can be found in the taxonomy repository.
[!IMPORTANT] There is a limit to how much content can exist in the question/answer pairs for the model to process. Due to this, only add a maximum of around 2300 words to your question and answer seed example pairs in the
qna.yaml
file.
📜 List and validate your new data
You can use the ilab taxonomy diff
command to ensure ilab
is registering your new knowledge or skills and your contributions are properly formatted. This command displays any new or modified YAML files within your taxonomy tree. For example, the following is the expected result of a valid compositional skill contribution after adding a new skill called foo-lang
to the freeform writing subdirectory:
(venv) $ ilab taxonomy diff
compositional_skills/writing/freeform/foo-lang/qna.yaml
Taxonomy in $HOME/.local/share/instructlab/taxonomy is valid :)
You can also validate your entire taxonomy by performing a diff against an empty base by using the --taxonomy-base=empty
argument:
(venv) $ ilab taxonomy diff --taxonomy-base=empty
compositional_skills/general/tables/empty/qna.yaml
compositional_skills/general/tables/editing/add_remove/qna.yaml
...
Taxonomy in $HOME/.local/share/instructlab/taxonomy is valid :)
🚀 Generate a synthetic dataset
Before following these instructions, ensure the existing model you are adding skills or knowledge to is still running. Alternatively, ilab data generate
can start a server for you if you provide a fully qualified model path via --model
.
-
To generate a synthetic dataset based on your newly added knowledge or skill set in taxonomy repository, run the following command:
With GPU acceleration:
ilab data generate --pipeline full --gpus <NUM_OF_GPUS>
Without GPU acceleration:
ilab data generate --pipeline simple
Use a non-default model (e.g. Mixtral-8x7B-Instruct-v0.1) to generate data, run the following command:
ilab data generate --model ~/.cache/instructlab/models/mistralai/mixtral-8x7b-instruct-v0.1 --pipeline full --gpus 4
NOTE: ⏳ This can take from 15 minutes to 1+ hours to complete, depending on your computing resources.
Example output of
ilab data generate
(venv) $ ilab data generate INFO 2024-07-30 19:57:44,093 numexpr.utils:161: NumExpr defaulting to 8 threads. INFO 2024-07-30 19:57:44,452 datasets:58: PyTorch version 2.3.1 available. Generating synthetic data using 'simple' pipeline, '$HOME/.cache/instructlab/models/mixtral-8x7b-instruct-v0.1.Q4_K_M.gguf' model, './taxonomy' taxonomy, against http://localhost:8000/v1 server INFO 2024-07-30 19:57:45,084 instructlab.sdg:375: Synthesizing new instructions. If you aren't satisfied with the generated instructions, interrupt training (Ctrl-C) and try adjusting your YAML files. Adding more examples may help. INFO 2024-07-30 19:57:45,090 instructlab.sdg.pipeline:153: Running pipeline single-threaded INFO 2024-07-30 19:57:47,820 instructlab.sdg.llmblock:51: LLM server supports batched inputs: False INFO 2024-07-30 19:57:47,820 instructlab.sdg.pipeline:197: Running block: gen_skill_freeform INFO 2024-07-30 19:57:47,820 instructlab.sdg.pipeline:198: Dataset({ features: ['task_description', 'seed_question', 'seed_response'], num_rows: 5 }) INFO 2024-07-30 20:02:16,455 instructlab.sdg:411: Generated 1 samples ...
The synthetic data set will be two files in the newly created in the datasets directory:
~/.local/share/instructlab/datasets
. These files will be namedskills_train_msgs_*.jsonl
andknowledge_train_msgs_*.jsonl
. -
Verify the files have been created by running the
ls datasets
command. Note: you must be in yourXDG_DATA_HOME/instructlab
directory.(venv) $ ls datasets/ node_datasets_2024-08-12T20_31_15 test_mixtral-8x7b-instruct-v0-1_2024-08-12T20_23_06.jsonl knowledge_recipe_2024-08-12T20_31_15.yaml node_datasets_2024-08-13T19_51_48 test_mixtral-8x7b-instruct-v0-1_2024-08-12T20_31_15.jsonl knowledge_recipe_2024-08-13T19_51_48.yaml skills_recipe_2024-08-12T20_31_15.yaml test_mixtral-8x7b-instruct-v0-1_2024-08-13T19_47_59.jsonl knowledge_train_msgs_2024-08-12T20_31_15.jsonl skills_recipe_2024-08-13T19_51_48.yaml test_mixtral-8x7b-instruct-v0-1_2024-08-13T19_51_48.jsonl knowledge_train_msgs_2024-08-13T19_51_48.jsonl skills_train_msgs_2024-08-12T20_31_15.jsonl train_mixtral-8x7b-instruct-v0-1_2024-08-12T20_31_15.jsonl messages_mixtral-8x7b-instruct-v0-1_2024-08-12T20_31_15.jsonl skills_train_msgs_2024-08-13T19_51_48.jsonl train_mixtral-8x7b-instruct-v0-1_2024-08-13T19_51_48.jsonl messages_mixtral-8x7b-instruct-v0-1_2024-08-13T19_51_48.jsonl test_mixtral-8x7b-instruct-v0-1_2024-08-12T20_13_21.jsonl
Optional: It is also possible to run the generate step against a different model via an OpenAI-compatible API. For example, the one spawned by
ilab model serve
or any remote or locally hosted LLM (e.g. viaollama
,LM Studio
, etc.). Run the following command:ilab data generate --endpoint-url http://localhost:8000/v1
Note that it is also possible to generate a synthetic dataset based on the entire contents of the taxonomy repo using the --taxonomy-base=empty
option:
ilab data generate --taxonomy-base=empty
👩🏫 Training the model
There are many options for training the model with your synthetic data-enhanced dataset.
Note: Every
ilab
command needs to run from within your Python virtual environment.
ilab model training pipelines
ilab model train
has three pipelines: simple
, full
, and accelerated
. The default is accelerated
.
simple
uses an SFT Trainer on Linux and MLX on MacOS. This type of training takes roughly an hour and produces the lowest fidelity model but should indicate if your data is being picked up by the training process.full
uses a custom training loop and data processing funcions for the granite family of models. This loop is optimizied for CPU and MPS functionality. Please use--pipeline=full
in combination with--device=cpu
(Linux) or--device=mps
(MacOS). You can also use--device=cpu
on a MacOS machine. However, MPS is optimized for better performance on these systems.accelerated
uses the instructlab-training library which supports GPU accelerated and distributed training. Thefull
loop and data processing functions are either pulled directly from or based off of the work in this library.
Train the model locally
ilab model train
NOTE: ⏳ This step can potentially take several hours to complete depending on your computing resources. Please stop
ilab model chat
andilab model serve
first to free resources.
If you are using ilab model train --pipeline=simple
on Linux:
ilab model train
outputs a brand-new model that can be served in the models
directory called ggml-model-f16.gguf
.
If you are using ilab model train --pipeline=simple
on MacOS:
ilab model train
outputs a brand-new model that is saved in the <model_name>-mlx-q
directory.
If you are using ilab model train --pipeline=full
on Linux or MacOS:
ilab model train
outputs brand-new .bin
and .gguf
models in the ~/.local/share/instructlab/checkpoints/hf_format
directory. in each samples_*
directory you will find two GGUF models. One is quantized and one is full precision, the quantized one has a Q4-M-K suffix.
If you are using ilab model train --pipeline=accelerated
on Linux:
ilab model train
outputs brand-new models that can be served in the ~/.local/share/instructlab/checkpoints
directory. These models can be run through ilab model evaluate
to choose the best one.
If you are using ilab model train --strategy lab-multiphase
on Linux:
ilab model train
outputs brand-new models that can be served in ~/.local/share/instructlab/phased/phase1/checkpoints
and ~/.local/share/instructlab/phased/phase2/checkpoints
. Phase 1 correlates to knowledge training and phase 2 correlates to skills training.
When running multi phase training evaluation is run on each phase, we will tell you which checkpoint in this folder performs the best.
Train the model locally on an M-series Mac or on Linux using the full pipeline
To train the model locally on your M-Series Mac using our full pipeline and MPS or on your Linux laptop/deskop using CPU:
ilab model train --pipeline full --device mps
ilab model train --pipeline full --device cpu
Note: ⏳ This process will take a while to complete. If you run for ~8 epochs it will take several hours.
ilab model train
outputs a directory for each epoch that resembles the following structure:
$ ls ~/.local/share/instructlab/checkpoints/hf_format/samples_0/
added_tokens.json pytorch_model.bin special_tokens_map.json tokenizer.json
config.json pytorch_model.gguf pytorch_model-Q4_K_M.gguf tokenizer_config.json tokenizer.model
this entire folder can be served on a system that supports vLLM using the .bin model. However, on most laptops you can serve either the full precision gguf: pytorch_model.gguf
or the 4-bit-quantized one: pytorch_model-Q4_K_M.gguf
.
Train the model locally on an M-series Mac or on Linux using the simple pipeline
To train the model locally on your M-Series Mac using our simple pipeline and MLX or on your Linux laptop/deskop using an SFT Trainer:
ilab model train --pipeline simple
Note: ⏳ This process will take a little while to complete (time can vary based on hardware and output of
ilab data generate
but on the order of 5 to 15 minutes)
on a Mac ilab model train
outputs a brand-new model that is saved in the <model_name>-mlx-q
directory called adapters.npz
(in Numpy
compressed array format). For example:
(venv) $ ls instructlab-merlinite-7b-lab-mlx-q
adapters-010.npz adapters-050.npz adapters-090.npz config.json tokenizer.model
adapters-020.npz adapters-060.npz adapters-100.npz model.safetensors tokenizer_config.json
adapters-030.npz adapters-070.npz adapters.npz special_tokens_map.json
adapters-040.npz adapters-080.npz added_tokens.json tokenizer.json
on Linux ilab model train
outputs a brand-new model that can be served in the models
directory called ggml-model-f16.gguf
.
Train the model locally with GPU acceleration
Training has experimental support for GPU acceleration with Nvidia CUDA or AMD ROCm. Please see the GPU acceleration documentation for more details. At present, hardware acceleration requires a data center GPU or high-end consumer GPU with at least 18 GB free memory.
ilab model train --pipeline accelerated --device cuda
This version of ilab model train
outputs brand-new models that can be served in the ~/.local/share/instructlab/checkpoints
directory. These models can be run through ilab model evaluate
to choose the best one.
Train the model locally with multi-phase training and GPU acceleration
ilab model train
supports multi-phase training. This results in the following workflow:
- We train the model on knowledge
- Evaluate the trained model to find the best checkpoint
- We train the model on skills
- We evaluate the model to find the best overall checkpoint
ilab model train --strategy lab-multiphase --phased-phase1-data <knowledge train messages jsonl> --phased-phase2-data <skills train messages jsonl> -y
This command takes in two .jsonl
files from your datasets
directory, one is the knowledge jsonl and the other is a skills jsonl. The -y
flag skips an interactive prompt asking the user if they are sure they want to run multi-phase training.
Note: this command may take 3 or more hours depending on the size of the data and number of training epochs you run.
Train the model in the cloud
Follow the instructions in Training.
⏳ Approximate amount of time taken on each platform:
- Google Colab: 5-10 minutes with a T4 GPU
- Kaggle: ~30 minutes with a P100 GPU.
After that's done, you can play with your model directly in the Google Colab or Kaggle notebook. Model trained on the cloud will be saved on the cloud. The model can also be downloaded and served locally.
📜 Test the newly trained model
-
Run the following command to test the model:
ilab model test
The output from the command will consist of a series of outputs from the model before and after training.
🧪 Evaluate the newly trained model
You can use the ilab model evaluate
command to evaluate the models you are training with several benchmarks. Currently, four benchmarks are supported.
Benchmark | Measures | Full Name | Description | Reference |
---|---|---|---|---|
MMLU | Knowledge | Massive Multitask Language Understanding | Tests a model against a standardized set of knowledge data and produces a score based on the model's performance | Measuring Massive Multitask Language Understanding |
MMLUBranch | Knowledge | N/A | Tests your knowledge contributions against a base model and produces a score based on the difference in performance | N/A |
MTBench | Skills | Multi-turn Benchmark | Tests a model's skill at applying its knowledge against a judge model and produces a score based on the model's performance | MT-Bench (Multi-turn Benchmark) |
MTBenchBranch | Skills | N/A | Tests your skill contributions against a judge model and produces a score based on the difference in performance | N/A |
[!NOTE] MTBench and MTBenchBranch use prometheus-8x7b-v2.0 as the judge model by default. While you do not need to use this model as your judge, it is strongly recommended to do so if you have the necessary hardware resources. You can download it via
ilab model download
.
Running MMLU
Below is an example of running MMLU on a local model with minimal tasks:
$ export INSTRUCTLAB_EVAL_MMLU_MIN_TASKS=true # don't set this if you want to run full MMLU
$ export ILAB_MODELS_DIR=$HOME/.local/share/instructlab/models
$ ilab model evaluate --benchmark mmlu --model $ILAB_MODELS_DIR/instructlab/granite-7b-lab
...
# KNOWLEDGE EVALUATION REPORT
## MODEL
/home/example-user/.local/share/instructlab/models/instructlab/granite-7b-lab
### AVERAGE:
0.45 (across 3)
### SCORES:
mmlu_abstract_algebra - 0.35
mmlu_anatomy - 0.44
mmlu_astronomy - 0.55
Below is an example of running MMLU on a Hugging Face model with minimal tasks:
$ export INSTRUCTLAB_EVAL_MMLU_MIN_TASKS=true # don't set this if you want to run full MMLU
$ ilab model evaluate --benchmark mmlu --model instructlab/granite-7b-lab
...
# KNOWLEDGE EVALUATION REPORT
## MODEL
instructlab/granite-7b-lab
### AVERAGE:
0.45 (across 3)
### SCORES:
mmlu_abstract_algebra - 0.35
mmlu_anatomy - 0.44
mmlu_astronomy - 0.55
[!NOTE] Currently, MMLU can only be run against a safetensors model directory, either locally or on Hugging Face. GGUFs are not currently supported.
Running MMLUBranch
Below is an example of running MMLUBranch with a local safetensors model directory:
$ export ILAB_MODELS_DIR=$HOME/.local/share/instructlab/models
$ ilab model evaluate --benchmark mmlu_branch --model $ILAB_MODELS_DIR/instructlab/granite-7b-lab --base-model $ILAB_MODELS_DIR/instructlab/granite-7b-lab
...
# KNOWLEDGE EVALUATION REPORT
## BASE MODEL
/home/example-user/.local/share/instructlab/models/instructlab/granite-7b-lab
## MODEL
/home/example-user/.local/share/instructlab/models/instructlab/granite-7b-lab
### AVERAGE:
+0.0 (across 1)
### NO CHANGE:
1. tonsils
Below is an example of running MMLUBranch with Hugging Face models:
$ ilab model evaluate --benchmark mmlu_branch --model instructlab/granite-7b-lab --base-model instructlab/granite-7b-lab
...
# KNOWLEDGE EVALUATION REPORT
## BASE MODEL
instructlab/granite-7b-lab
## MODEL
instructlab/granite-7b-lab
### AVERAGE:
+0.0 (across 1)
### NO CHANGE:
1. tonsils
[!TIP] You can mix and match running local models and remote models on Hugging Face, so long as a safetensors model is present.
Running MTBench
Below is an example of running MTBench with a local safetensors model directory:
$ export ILAB_MODELS_DIR=$HOME/.local/share/instructlab/models
$ ilab model evaluate --benchmark mt_bench --model $ILAB_MODELS_DIR/instructlab/granite-7b-lab --judge-model $ILAB_MODELS_DIR/instructlab/granite-7b-lab
...
# SKILL EVALUATION REPORT
## MODEL
/home/example-user/.local/share/instructlab/models/instructlab/granite-7b-lab
### AVERAGE:
8.07 (across 91)
### TURN ONE:
8.64
### TURN TWO:
7.19
### ERROR RATE:
0.43
Below is an example of running MTBench with local GGUF models:
$ export ILAB_MODELS_DIR=$HOME/.local/share/instructlab/models
$ ilab model evaluate --benchmark mt_bench --model $ILAB_MODELS_DIR/granite-7b-lab-Q4_K_M.gguf --judge-model $ILAB_MODELS_DIR/granite-7b-lab-Q4_K_M.gguf
...
# SKILL EVALUATION REPORT
## MODEL
/home/example/.local/share/instructlab/models/granite-7b-lab-Q4_K_M.gguf
### AVERAGE:
5.0 (across 1)
### TURN ONE:
5.0
### TURN TWO:
N/A
### ERROR RATE:
0.99
[!NOTE] Currently, MTBench must be used with local models. Using models directly from Hugging Face without downloading them is unsupported.
Running MTBenchBranch
Below is an example of running MTBenchBranch with a local safetensors model directory:
$ export ILAB_MODELS_DIR=$HOME/.local/share/instructlab/models
$ export ILAB_TAXONOMY_DIR=$HOME/.local/share/instructlab/taxonomy
$ ilab model evaluate --benchmark mt_bench_branch \
--model $ILAB_MODELS_DIR/instructlab/granite-7b-lab \
--judge-model $ILAB_MODELS_DIR/instructlab/granite-7b-lab \
--base-model $ILAB_MODELS_DIR/instructlab/granite-7b-lab \
--taxonomy-path $ILAB_TAXONOMY_DIR \
--branch rc \
--base-branch main
...
# SKILL EVALUATION REPORT
## BASE MODEL
/home/example/.local/share/instructlab/models/instructlab/granite-7b-lab
## MODEL
/home/example/.local/share/instructlab/models/instructlab/granite-7b-lab
### IMPROVEMENTS:
1. compositional_skills/extraction/receipt/markdown/qna.yaml (+4.0)
2. compositional_skills/STEM/science/units_conversion/temperature_conversion/qna.yaml (+3.0)
3. compositional_skills/extraction/commercial_lease_agreement/bullet_points/qna.yaml (+3.0)
...
### REGRESSIONS:
1. compositional_skills/extraction/abstractive/title/qna.yaml (-5.0)
2. compositional_skills/extraction/receipt/bullet_points/qna.yaml (-4.5)
3. compositional_skills/writing/grounded/summarization/wiki_insights/one_line/qna.yaml (-4.0)
...
### NO CHANGE:
1. compositional_skills/STEM/math/reasoning/qna.yaml
2. compositional_skills/extraction/commercial_lease_agreement/csv/qna.yaml
3. compositional_skills/roleplay/explain_like_i_am/graduate/qna.yaml
...
### NEW:
1. compositional_skills/linguistics/organize_lists/qna.yaml
2. compositional_skills/extraction/invoice/plain_text/qna.yaml
3. compositional_skills/writing/grounded/summarization/wiki_insights/concise/qna.yaml
...
### ERROR RATE:
0.32
Below is an example of running MTBenchBranch with local GGUF models:
$ export ILAB_MODELS_DIR=$HOME/.local/share/instructlab/models
$ export ILAB_TAXONOMY_DIR=$HOME/.local/share/instructlab/taxonomy
$ ilab model evaluate --benchmark mt_bench_branch --model $ILAB_MODELS_DIR/granite-7b-lab-Q4_K_M.gguf --judge-model $ILAB_MODELS_DIR/granite-7b-lab-Q4_K_M.gguf --base-model $ILAB_MODELS_DIR/granite-7b-lab-Q4_K_M.gguf --taxonomy-path $ILAB_TAXONOMY_DIR --branch rc --base-branch main
...
# SKILL EVALUATION REPORT
## BASE MODEL
/home/ec2-user/.local/share/instructlab/models/granite-7b-lab-Q4_K_M.gguf
## MODEL
/home/ec2-user/.local/share/instructlab/models/granite-7b-lab-Q4_K_M.gguf
### NO CHANGE:
1. compositional_skills/STEM/math/distance_conversion/qna.yaml
### NEW:
1. compositional_skills/linguistics/organize_lists/qna.yaml
2. compositional_skills/extraction/annual_report/reasoning/qna.yaml
3. compositional_skills/extraction/email/plain_text/qna.yaml
4. compositional_skills/extraction/technical_paper/tables/bullet_points/qna.yaml
5. compositional_skills/extraction/technical_paper/abstract/reasoning/qna.yaml
### ERROR RATE:
0.98
[!NOTE] Currently, MTBenchBranch must be used with local models. Using models directly from Hugging Face without downloading them is unsupported.
🍴 Serve the newly trained model
-
Stop the server you have running by entering
ctrl+c
keys in the terminal running the server.IMPORTANT:
-
🍎 This step is only implemented for macOS with M-series chips (for now).
-
Before serving the newly trained model you must convert it to work with the
ilab
cli. Theilab model convert
command converts the new model into quantized GGUF format which is required by the server to host the model in theilab model serve
command.
-
-
Convert the newly trained model by running the following command:
ilab model convert
-
Serve the newly trained model locally via
ilab model serve
command with the--model-path
argument to specify your new model:ilab model serve --model-path <new model path>
Which model should you select to serve? After running the
ilab model convert
command, some files and a directory are generated. The model you will want to serve ends with an extension of.gguf
and exists in a directory with the suffixtrained
. For example:instructlab-merlinite-7b-lab-trained/instructlab-merlinite-7b-lab-Q4_K_M.gguf
.
📣 Chat with the new model (not optional this time)
-
Try the fine-tuned model out live using the chat interface, and see if the results are better than the untrained version of the model with chat by running the following command:
ilab model chat -m <New model path>
If you are interested in optimizing the quality of the model's responses, please see
TROUBLESHOOTING.md
🚀 Upgrade InstructLab to latest version
-
To upgrade InstructLab to the latest version, use the following command:
pip install instructlab --upgrade
🎁 Submit your new knowledge or skills
Of course, the final step is, if you've improved the model, to open a pull-request in the taxonomy repository that includes the files (e.g. qna.yaml
) with your improved data.
📬 Contributing
Check out our contributing guide to learn how to contribute.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file instructlab-0.19.5.tar.gz
.
File metadata
- Download URL: instructlab-0.19.5.tar.gz
- Upload date:
- Size: 6.9 MB
- Tags: Source
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f875dd7021ff5d5d52df5184b4c3585a0900f8a7f00d57d77521472f465f1b9 |
|
MD5 | bd5ae74674356c1f4eb205130a0f45e7 |
|
BLAKE2b-256 | 11cb05942fc7991960d25fa09523532209bbfa2e40ba6bc2c700f69e2e7b7968 |
File details
Details for the file instructlab-0.19.5-py3-none-any.whl
.
File metadata
- Download URL: instructlab-0.19.5-py3-none-any.whl
- Upload date:
- Size: 182.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? Yes
- Uploaded via: twine/5.1.1 CPython/3.12.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 16a230f0213d02d6ee4586703ad8b053635b62793de4a09e5ac3931628bcf84f |
|
MD5 | f407271cce04c7f10ac1679a7d2bff92 |
|
BLAKE2b-256 | 8a0bd671f4bfc07432d2d0054bc1b973516aa0fac75ccd4a6ca2de71f254e810 |