Intel® Optimization for Horovod* is the distributed training framework for TensorFlow* and PyTorch*.
Project description
Intel® Optimization for Horovod* is the distributed training framework for TensorFlow* and PyTorch*. The goal of Intel® Optimization for Horovod* is to make distributed Deep Learning fast and easy to use on Intel XPU(GPU, CPU, etc) devices.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
Close
Hashes for intel_optimization_for_horovod-0.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 17f80f3bb7e04d506be3f907383cc5d084d310ead01ddc19dac62e6e2c71c96c |
|
MD5 | 849ba62d4db79a264a5f3a94620011cb |
|
BLAKE2b-256 | 1ceef0c0ef1aa0d235666f639b174427a961d4951764ee2da96516db2d98c3f9 |
Close
Hashes for intel_optimization_for_horovod-0.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ef96ad8a2fe1f378077e56c613adebcf6a6c629727fc18b46425fa5ef6483641 |
|
MD5 | 5cff86f4481dc3f85accffc136120d4a |
|
BLAKE2b-256 | 11dbca86700d4e637491c169008273b61bfbd41556b4d460fecd134967a77b41 |
Close
Hashes for intel_optimization_for_horovod-0.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 30432337990303f4039eeca4bf47b9ed8b6f695479f1d7da4191e73dadd7f326 |
|
MD5 | fb6d4cbc9ba21d19105b4e01a99a2e3d |
|
BLAKE2b-256 | a47cebed5b61011adc408cb035f8435ac5bf4dae4ddf66c7ecd699c71734f036 |
Close
Hashes for intel_optimization_for_horovod-0.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d4de5e51d19c6b3c15700c59d889e60e8bd8260aec849d798417d7c2bf6ae48 |
|
MD5 | 56ee4c28eca6701a834ef0dbd53693d9 |
|
BLAKE2b-256 | 2ed1df774123d1ec4b1a60fd4cc9497a364ecdaa6c472a82f3b27e0de8ee309f |