An easy to start Intelligent Workshop Algorithm Framework
Project description
Intelligent Workshop Algorithm Framework ONNX
intelliw-onnx
This tool is an ONNX tool that provides various functions, including model conversion, model quantization, model pre- and post-processing.
It can be used either through the command line or by calling it in code.
Base
Images:
# cpu onnxruntime 1.15.1
dockerhub.yonyoucloud.com/c87e2267-1001-4c70-bb2a-ab41f3b81aa3/intelliw/onnx-base:py38-1.0
# gpu cuda 11.6 onnxruntime 1.15.1
dockerhub.yonyoucloud.com/c87e2267-1001-4c70-bb2a-ab41f3b81aa3/intelliw/onnx-cuda116:py38-1.0
how to use images
docker run -p {external_port}:{internal_port} -v {external_dir_path}:{images_internal_dir_path} {image} bash
# -p, --publish list Publish a container's port(s) to the host
# -v, --volume list Bind mount a volume
# e.g. docker run -p 18080:80 -v C://User//xxx//package:/home/xxx/package dockerhub.yonyoucloud.com/c87e2267-1001-4c70-bb2a-ab41f3b81aa3/intelliw/onnx-base:py38-1.0 bash
Installing
Install and update using pip:
pip install -U intelliw-onnx
Argument
model_path: [required] Input path(model file or folder)
model_type: [required] Input model type(ex: paddle/pytorch)
output: [required] Output path(ex: ./output.onnx)
op_set: Set op_set version(default: 11)
input_shape: [pytorch/paddle required] Input shape for pytorch/paddle(ex: [1,3,224,224] or [1,3,224,224]/[1,3,56,56])
model_def_file: [pytorch/paddle required] Paddle/pytorch model definition file location(ex: --model_def_file ./cnn.py)
model_class_name: [pytorch/paddle required] Paddle/pytorch model class name(ex: --model_class_name CNN)
model_weights_file: Paddle/pytorch model weights file location(ex: --model_weights_file ./0.99667.pth)
model_input_type: Paddle/pytorch input type(default float, choice is ['float', 'float32', 'float16', 'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'bool'])
params_file: Paddle/pytorch params declaration file location(ex: --params_file ./params.py)
output_num: If output num of pytorch model > 1, you can specify it by --output_num
keep_batch: For pytorch, if set 1, the tool will keep model batch size(if 0, set it to dynamic(-1))"
dynamic_batch: If set 1, the tool will convert batch size to -1
simplify: Simplify the model(0:no simplify;1:do simplify; 2:for dynamic model)
simplify_hw: When h/w is -1, you can specify h/w as you expected(together with --simplify 2)
force_simplify: Force simplify the model(0:no simplify;1:do simplify; 2:for dynamic model)
params_file
means params.py
# params.py
param_dict = {
"n": 3,
"your_params":"your_value"
...
}
Pytorch to ONNX
Code
from intelliw_onnx.convert import ONNXConvert, ConvertArgs
if __name__ == '__main__':
args = ConvertArgs(model_path='./model.pth',
model_type='pytorch',
output='./test_tf_model.onnx',
input_shape='[1,3,10,10]',
model_def_file="./test_onnx_demo.py",
model_class_name="MyCNNModel",
params_file="./params.py")
converter = ONNXConvert(args)
converter.convert()
CMD
intelliw-onnx convert --model_path ./model.pth --model_type pytorch --output "./output.onnx" --input_shape '[1,3,10,10]'
--model_def_file './test_onnx_demo.py'
--model_class_name 'MyModel'
--params_file ./params.py
Other Mode
Use model_weights_file
:
Contains only weight parameters, model_path can be arbitrarily specified, and will not be used
intelliw-onnx convert --model_path ./xxx --model_type pytorch --output ./output.onnx
--model_def_file ./unet.py
--model_class_name Net
--model_weights_file ./9_epoch_iou_0.9743422508239746.pth
--input_shape [64,3,32,32]
Contains only weight parameters, using classes in torchvision, the model_def_file parameter is not required , model_path can be arbitrarily specified, and will not be used
intelliw-onnx convert --model_path ./xxx --model_type pytorch --output ./output.onnx
--model_class_name torchvision.models.resnet50
--model_weights_file ./0.96966957919051920.9139525532770406.pth
--input_shape [16,3,256,256]
Use multi input/output:
intelliw-onnx convert --model_path ./model.pth --model_type pytorch --output ./output.onnx
--model_def_file ./pt_multi_input.py
--model_class_name nettest
--input_shape [1,3,200,300]/[1,3,200,300]
--output_num 2
or
intelliw-onnx convert --model_path ./model.pth --model_type pytorch --output ./output.onnx
--model_def_file ./pt_multi_input.py
--model_class_name nettest
--model_weights_file ./multi_input_state.pth
--input_shape [1,3,500,600]/[1,3,500,600]
--output_num 2
Paddle to ONNX
Cde
1 dynamic paddle model
from intelliw_onnx.convert import ONNXConvert, ConvertArgs
if __name__ == '__main__':
args = ConvertArgs(model_path='./xxx',
model_type='paddle',
output='./paddle.onnx',
input_shape='[1,1,28,28] ',
model_def_file="./mnist.py ",
model_class_name="LeNet",
model_weights_file="./paddle_checkpoint/final.pdparams")
converter = ONNXConvert(args)
converter.convert()
2 static paddle model
from intelliw_onnx.convert import ONNXConvert, ConvertArgs
if __name__ == '__main__':
args = ConvertArgs(model_path='./xxx/',
model_type='paddle',
output='./paddle.onnx')
converter = ONNXConvert(args)
converter.convert()
CMD
1 dynamic paddle model
intelliw-onnx --model_path ./xxx/ --model_type paddle
--output ./paddle.onnx --model_def_file ./mnist.py
--model_class_name LeNet --model_weights_file ./paddle_checkpoint/final.pdparams
--input_shape [1,1,28,28]
or
intelliw-onnx --model_path ./xxx/ --model_type paddle
--output ./paddle.onnx --model_class_name paddle.vision.models.LeNet
--model_weights_file ./paddle_checkpoint/final.pdparams --input_shape [1,1,28,28]
2 static paddle model
intelliw-onnx --model_path ./paddle_model/
--model_type paddle --output ./paddle.onnx
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file intelliw_onnx-0.0.4-py3-none-any.whl
.
File metadata
- Download URL: intelliw_onnx-0.0.4-py3-none-any.whl
- Upload date:
- Size: 50.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.18
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8f5122a370f7a83dba1026c33be3ec58d8290ad84f9cfc7127255fe7cd012c77 |
|
MD5 | f104e6674afef2845f7a511fd83cd52e |
|
BLAKE2b-256 | 4eb0f673d66a7674c4f05c7d4c5674ec71ee64f0e8629ee5a8cc11818f58da95 |