Skip to main content

An easy to start Intelligent Workshop Algorithm Framework

Project description

Intelligent Workshop Algorithm Framework ONNX

intelliw-onnx
This tool is an ONNX tool that provides various functions, including model conversion, model quantization, model pre- and post-processing.
It can be used either through the command line or by calling it in code.

Installing

Install and update using pip:

pip install -U intelliw-onnx

Argument

model_path: [required]  Input path(model file or folder)
model_type: [required]  Input model type(ex: paddle/pytorch)
output:     [required]  Output path(ex: ./output.onnx)

op_set:             Set op_set version(default: 11)
input_shape:        [pytorch/paddle required]  Input shape for pytorch/paddle(ex: [1,3,224,224] or [1,3,224,224]/[1,3,56,56])
model_def_file:      [pytorch/paddle required]  Paddle/pytorch model definition file location(ex: --model_def_file ./cnn.py)
model_class_name:   [pytorch/paddle required]  Paddle/pytorch model class name(ex: --model_class_name CNN)
model_weights_file:  Paddle/pytorch model weights file location(ex: --model_weights_file ./0.99667.pth)
model_input_type:   Paddle/pytorch input type(default float, choice is ['float', 'float32', 'float16', 'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64', 'int64', 'bool'])
params_file:         Paddle/pytorch params declaration file location(ex: --params_file ./params.py)
output_num:         If output num of pytorch model > 1, you can specify it by --output_num
keep_batch:         For pytorch, if set 1, the tool will keep model batch size(if 0, set it to dynamic(-1))"
dynamic_batch:      If set 1, the tool will convert batch size to -1
simplify:           Simplify the model(0:no simplify;1:do simplify; 2:for dynamic model)
simplify_hw:        When h/w is -1, you can specify h/w as you expected(together with --simplify 2)
force_simplify:     Force simplify the model(0:no simplify;1:do simplify; 2:for dynamic model)

params_file means params.py

# params.py
param_dict = {
    "n": 3, 
    "your_params":"your_value"
    ...
}

Pytorch to ONNX

Code

from intelliw_onnx.convert import ONNXConvert, ConvertArgs

if __name__ == '__main__':
    args = ConvertArgs(model_path='./model.pth',
                       model_type='pytorch',
                       output='./test_tf_model.onnx',
                       input_shape='[1,3,10,10]',
                       model_def_file="./test_onnx_demo.py",
                       model_class_name="MyCNNModel",
                       params_file="./params.py")
    converter = ONNXConvert(args)
    converter.convert()

CMD

intelliw-onnx convert --model_path ./model.pth --model_type pytorch --output "./output.onnx" --input_shape '[1,3,10,10]' 
  --model_def_file './test_onnx_demo.py' 
  --model_class_name 'MyModel'  
  --params_file ./params.py

Other Mode

Use model_weights_file:

Contains only weight parameters, model_path can be arbitrarily specified, and will not be used

intelliw-onnx convert --model_path ./xxx --model_type pytorch --output ./output.onnx 
  --model_def_file ./unet.py
  --model_class_name Net
  --model_weights_file ./9_epoch_iou_0.9743422508239746.pth 
  --input_shape [64,3,32,32]  

Contains only weight parameters, using classes in torchvision, the model_def_file parameter is not required , model_path can be arbitrarily specified, and will not be used

intelliw-onnx convert --model_path ./xxx --model_type pytorch --output ./output.onnx 
  --model_class_name torchvision.models.resnet50 
  --model_weights_file ./0.96966957919051920.9139525532770406.pth 
  --input_shape [16,3,256,256]

Use multi input/output:

intelliw-onnx convert --model_path ./model.pth --model_type pytorch --output ./output.onnx 
  --model_def_file ./pt_multi_input.py 
  --model_class_name nettest 
  --input_shape [1,3,200,300]/[1,3,200,300] 
  --output_num 2 

or

intelliw-onnx convert --model_path ./model.pth --model_type pytorch --output ./output.onnx 
  --model_def_file ./pt_multi_input.py 
  --model_class_name nettest 
  --model_weights_file ./multi_input_state.pth 
  --input_shape [1,3,500,600]/[1,3,500,600] 
  --output_num 2

Paddle to ONNX

Cde

1 dynamic paddle model

from intelliw_onnx.convert import ONNXConvert, ConvertArgs

if __name__ == '__main__':
    args = ConvertArgs(model_path='./xxx',
                       model_type='paddle',
                       output='./paddle.onnx',
                       input_shape='[1,1,28,28] ',
                       model_def_file="./mnist.py ",
                       model_class_name="LeNet",
                       model_weights_file="./paddle_checkpoint/final.pdparams")
    converter = ONNXConvert(args)
    converter.convert()

2 static paddle model

from intelliw_onnx.convert import ONNXConvert, ConvertArgs

if __name__ == '__main__':
    args = ConvertArgs(model_path='./xxx',
                       model_type='paddle',
                       output='./paddle.onnx')
    converter = ONNXConvert(args)
    converter.convert()

CMD

1 dynamic paddle model

intelliw-onnx --model_path ./xxx --model_type paddle 
  --output ./paddle.onnx --model_def_file ./mnist.py 
  --model_class_name LeNet --model_weights_file ./paddle_checkpoint/final.pdparams 
  --input_shape [1,1,28,28] 

or

intelliw-onnx --model_path ./xxx --model_type paddle 
  --output ./paddle.onnx --model_class_name paddle.vision.models.LeNet 
  --model_weights_file ./paddle_checkpoint/final.pdparams --input_shape [1,1,28,28] 

2 static paddle model

intelliw-onnx --model_path ./paddle_model 
  --model_type paddle --output ./paddle.onnx

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

intelliw_onnx-0.0.2-py3-none-any.whl (60.1 kB view details)

Uploaded Python 3

File details

Details for the file intelliw_onnx-0.0.2-py3-none-any.whl.

File metadata

File hashes

Hashes for intelliw_onnx-0.0.2-py3-none-any.whl
Algorithm Hash digest
SHA256 0db080c9d78598ed49c5faa682dbd7550dc11fe240500a8533dbf25a018b1863
MD5 a5a03b5f002777832780f15eac8abd1d
BLAKE2b-256 a2e9663032e2a1f96dc72767f124bfd4370c9257841d3047979385f25b659b91

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page