Skip to main content

Interactive classification metrics

Project description

Interactive classification metrics

Get an intuitive sense for the ROC curve and other binary classification metrics with this interactive visualization application.

Read the README for more information.

Install

pip install interactive-classification-metrics

New environment recommended. Python >=3.8, <3.11. Installs:

bokeh==2.4.3
numpy>=1.21.5
pandas==1.4.2
py_mcc_f1==0.1.0
scikit_learn==1.0.2
scipy==1.7.3

Run the application with Bokeh server locally

run-app

Opens a web browser where you can use the application.

Acknowledgments

Special thanks to Dr. Davide Chicco (@davidechicco) for valuable feedback on this project.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Built Distribution

File details

Details for the file interactive_classification_metrics-0.2.2.tar.gz.

File metadata

File hashes

Hashes for interactive_classification_metrics-0.2.2.tar.gz
Algorithm Hash digest
SHA256 4756eca4d9bba29b4eb555fd4cda7aad6206c2371308c15ddd1fffa38f669dac
MD5 310ce357082310c7a7bbb78741dba892
BLAKE2b-256 fed76896fd5d9c9047baf07eb18b8c04ac4c9c51323d966f4f7d5d7a678eba86

See more details on using hashes here.

File details

Details for the file interactive_classification_metrics-0.2.2-py3-none-any.whl.

File metadata

File hashes

Hashes for interactive_classification_metrics-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 38c166af0345cba2dd60cabe1d130ee2111be016214fb708e06fd3106acb55f1
MD5 ccc9624b2a4beffccd8b8f0dd40c7bea
BLAKE2b-256 aa6fae63698fa4743e328e165c4f26c2f90e378da1bc8e2be99020054c0ff4e3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page