Skip to main content

A research framework for artificial agent interactions

Project description

InterLab - toolkit for multi-agent interactions

GitHub Release PyPI Release Documentation Build status Open In Colab GitHub License

Welcome to InterLab, a research-focused toolkit created to facilitate study and experimentation in the realm of agent interactions, particularly those based on Language Learning Models (LLMs). Our primary objective is to simplify the process of crafting, deploying, and inspecting complex and structured queries within the context of agent interactions, while also providing robust support for interaction logging, UI and visualization. While we maintain a broad scope and plan to include game theoretic agents and a variety of scenarios, our main emphasis lies in the sphere of LLM interactions.

InterLab is developed at the Alignment of Complex Systems Research Group and distributed under MIT license (see LICENSE).

Current status: InterLab is in open beta. InterLab is also active development, we use it internally for our experiments, and we want to make it available to the wider research community. Although we aim to limit the breaking changes between major versions, the API may change substantially as we refine the design and gather information about usage.

If you use InterLab, want to share ideas, feedback or have any questions, please email us at gavento@acsresearch.org - we'd be happy to hear from you.

Overview

InterLab is composed of three main packages:

  • interlab contains the core functionality and common abstractions of actors, environments, memory, and language model interactions, along with a few helpful scaffolds. The main modules there are:
    • actor provides framework for actor interactions, including a generic LLM single-shot agent and a web console for playing as an actor, along with actor memory systems. The agents may be queried for structured (typed JSON-like) or unstuctured actions.
    • environment providing abstraction over partially observable environments.
    • queries contains powerful helpers for querying the models, in particular querying for any dataclass or Pydantic model with robust response parsing and retries, summarization tools etc.
  • treetrace offers comprehensive structured logging of nested TracingNodess, storage for traing nodes, and custom visualization of content such as Images, generic HTML, and tracking f-string-like field substitutions in larger text.
  • interlab_zoo serves as a repository for specific and opinionated implementations of actors, scenarios, actor memory systems, tracing post-processing, and other tools that enhance the InterLab project. Its mission is to gather code that is both widely applicable and useful, while maintaining a compact and focused core package.

Beyond that, some less-tested and experimental code can be found in experimental submodules accross the core package.

Structured interaction log browser

In-notebook or independent browser for the structured logs, with live updates, support for JSON-like structured data and inline visualizations. Captures both high-level interaction structure and the low-level API calls for easy inspection and debugging. Example screenshots (click to zoom in):

Tracing browser screenshot

Tracing browser screenshot

Example notebooks

You can find Jupyter notebooks with a few worked-out examples here. The notebook car_negotiation.ipynb is a good starting point for a simple bargaining simulation.

Installation

You can install the package interlab from PyPI using pip or any other package manager.

pip install interlab

Installation with development tools

This repository utilizes Poetry package management, which is recommended for dependency installation and is required for InterLab development. Poetry automatically generates and manages a virtual environment for you, and also installs interlab module itself. If you have poetry installed, running the following command inside this repository will install InterLab:

poetry install

pip and requirements.txt. Alternatively, pip can be used to install dependencies with pip install -r requirements.txt (core requirements) or pip install -r requirements-full.txt (including development tools, Jupyter Lab, etc.; equivalent to poetry install). To use InterLab in Google Colab, we use the requirements in requirements-colab.txt to get aroung some Colab versioning conflicts.

Development and experiments

Jupyter Lab provides the simplest way to interact with the code and design experiments:

poetry run jupyter lab
# Or without poetry, in the project root folder:
jupyter lab

After running the command, open the provided link in your browser. notebooks/car_negotiation.ipynb is a recommended starting point.

Google Colab

Open In Colab

Google Colab often offers a lightweight alternative to setting up InterLab locally on your computer. Interlab comes with built-in colab compatibility and we have prepared a Example InterLab Colab experiment with common setup and a simple example experiment with two LLMs interacting on behalf of their users.

Note: API Keys

In order to use LLM provider serveics and APIs, you need to generate and provide the corresponding API keys. You can provide the keys as environment variables, via .env file, or interactively on every run (e.g. in the colab). Storing keys in the notebook is possible but not recommended (as they easily leak into git or while sharing the code).

API keys can be stored in a .env file located in the notebook directory or your home directory. (This file is ignored by git by default, providing an additional security measure.) The file is a simple text file with key=value pairs, for example:

OPENAI_API_KEY=sk-...
OPENAI_API_ORG=org-...
ANTHROPIC_API_KEY=sk-ant-...
...

You can then import these variables from the .env file into a Jupyter notebook using the dotenv package:

import dotenv
dotenv.load_dotenv()

Contributions and development

To contribute, please submit a pull request with your proposed changes based on the latest main branch.

By submitting a pull request for this project, you agree to license your contribution under the MIT license to this project as written in the LICENSE file.

Citing InterLab

If you use InterLab in your researh, please cite it in your work using the "Cite this repository" github gadget or with:

Tomáš Gavenčiak, Ada Böhm: InterLab [Computer software]. 2023. https://github.com/acsresearch/interlab

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

interlab-0.4.1.tar.gz (731.2 kB view details)

Uploaded Source

Built Distribution

interlab-0.4.1-py3-none-any.whl (746.6 kB view details)

Uploaded Python 3

File details

Details for the file interlab-0.4.1.tar.gz.

File metadata

  • Download URL: interlab-0.4.1.tar.gz
  • Upload date:
  • Size: 731.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.5.0-14-generic

File hashes

Hashes for interlab-0.4.1.tar.gz
Algorithm Hash digest
SHA256 9f69c60976cd1e53a515d2605906e7a333aa41cd1c177cf4d63506451532b10a
MD5 02a37636426ac0bdac42867cb3c6a158
BLAKE2b-256 de0813717b70227e81826525225ec8411714ab605184431f27499da4e9154c21

See more details on using hashes here.

File details

Details for the file interlab-0.4.1-py3-none-any.whl.

File metadata

  • Download URL: interlab-0.4.1-py3-none-any.whl
  • Upload date:
  • Size: 746.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.4.2 CPython/3.10.12 Linux/6.5.0-14-generic

File hashes

Hashes for interlab-0.4.1-py3-none-any.whl
Algorithm Hash digest
SHA256 96dadd090c09238eb76ef651025755a7f8142d97cf27585715d8f37130f27eb4
MD5 bc6b4056be0ba9c342115df3ccb36a24
BLAKE2b-256 dff972d25d5dfdd57990f3f60d51cdc8d023a3918d8c0d8f5426aaf7c269dd0b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page