Skip to main content

interlap: fast, simple interval overlap testing

Project description

InterLap: simple, fast interval overlap testing

Build Status

InterLap is >20 times faster than doing a naive search (see: https://brentp.github.io/interlap/benchmark.html) with no memory overhead because it operates on a sorted list. It is pure python and has no dependencies.

It uses binary search and a knowledge of the longest observed interval to quickly query datasets with 100's of thousands of intervals.

See the documentation at https://brentp.github.io/interlap/

Usage

Interlap takes tuples or lists where the first 2 elements are start, end and the remaining elements can be anything.

>>> from interlap import InterLap
>>> inter = InterLap()

#Here create 10K random intervals:

>>> import random
>>> random.seed(42)
>>> sites = random.sample(range(22, 100000000, 12), 50000)
>>> ranges = [(i, i + random.randint(2000, 20000)) for i in sites]

>>> inter.update(ranges)
>>> inter.add((20, 22, {'info': 'hi'}))

>>> [20, 21] in inter
True

>>> next(inter.find((21, 21)))
(20, 22, {'info': 'hi'})

>>> inter.add((2, 3, {'info': 'hello'}))

*NOTE*: below shows how edge-cases are handled.
>>> list(inter.find((2, 2)))
[(2, 3, {'info': 'hello'})]
>>> list(inter.find((3, 3)))
[(2, 3, {'info': 'hello'})]

Test every item in the InterLap. These 50K queries take < 0.5 seconds:

>>> for s, e in ranges:
...     assert (s, e) in inter

InterLap objects are iterable:

>>> for seo in inter:
...     assert (seo[0], seo[1]) in inter

Installation

pip install interlap

Example

In general, we will want one interlap per chromosome for genomic data. The snippet below shows a simple way to do that in the process of creating and then querying some intervals.

from interlap import InterLap
from collections import defaultdict
import sys

# use defaultdict to key by chromosome.
inter = defaultdict(InterLap)

for toks in (x.rstrip().split("\t") for x in open(sys.argv[1])):
    start, end = map(int, toks[1:3])
    inter[toks[0]].add((start, end, toks))

# now find overlaps in another file:

for toks in (x.rstrip().split("\t") for x in open(sys.argv[2])):
    start, end = map(int, toks[1:3])

    print list(inter[toks[0]].find((start, end)))

Why

I am aware of bx-python's interval tree (I wrote the cython version) but for some projects it is nice to have a simple dependency (or no dependency since this can be included as a single file or 30 lines of code) when we just need something a bit better than naive overlap testing.

In my testing, the method implemented here, using a sorted list and keeping track of the longest observed interval is the fastest pure python method as long as the longest observed interval is does not cover a substantial fraction of intervals in the set.

IntervalSet Operations

As of version 0.2.0 Interlap also includes an Interval class that behaves like what is normally called an interval set.

# note how it merges overlapping sub-intervals.
>>> Interval([(1, 95), (95, 100)]).add(Interval([(90, 100)]))
Interval([(1, 100)])

See the doctests under the Interval class for more details

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

interlap-0.2.7.tar.gz (6.1 kB view details)

Uploaded Source

File details

Details for the file interlap-0.2.7.tar.gz.

File metadata

  • Download URL: interlap-0.2.7.tar.gz
  • Upload date:
  • Size: 6.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200529 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.7.6

File hashes

Hashes for interlap-0.2.7.tar.gz
Algorithm Hash digest
SHA256 31e4f30c54b067c4939049f5d8131ae5e2fa682ec71aa56f89c0e5b900806ec9
MD5 8a7147649d3393edfb3ab2e3f1887b6a
BLAKE2b-256 72849f71369fc868dc963ddf51d1bfd8853a9793a37a21c9081a433f6e81d56a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page