Skip to main content

Calculate invariant trajectory representations from trajectory data and generate new trajectories from invariant representations

Project description

install_and_test License: MIT GitHub code size in bytes GitHub issues

Logo Trajectory Invariants

invariants-py is a Python library to robustly calculate coordinate-invariant trajectory representations using geometric optimal control. It also supports trajectory generation under user-specified trajectory constraints starting from invariant representations.

More information can be found on the documentation website: https://trajectory-invariants.github.io

Features

The main features are:

  • Calculation of invariant descriptors for trajectories.
  • Fast trajectory adaptation starting from the invariant descriptors.

Invariant trajectory representations find their application in trajectory analysis, trajectory segmentation, recognition and generalization.

Installation

The package can be installed from PyPI or from source.

Prerequisites

The package requires Python 3.8 or higher.

1. Installation from PyPI

This installation option is recommended if you only want to use the package and do not plan to modify the source code.

Upgrade your version of pip:

pip install --upgrade pip    

Install the package:

pip install invariants-py

2. Installation from source

This installation option is recommended if you plan to modify or experiment with the source code.

Clone (or download) the invariants-py repository:

git clone https://github.com/trajectory-invariants/invariants_py.git

Navigate to the cloned repository:

cd invariants_py

Upgrade your version of pip:

pip install --upgrade pip    

Install the package:

pip install -e .

Getting started

Basic examples are provided to get you started in the examples folder.

More detailed examples and tutorials can be found on the documentation website.

Speed up using Fatrop

To speed up the solution of the optimal control problems, you can optionally install the fatrop solver. The instructions are available on this page of the documentation website.

Roadmap

The following features are planned for future releases:

  • Support for more types of invariant representations (e.g. screw invariants, global invariants, ...).
  • Support for more types of constraints in the trajectory generation.
  • Benchmarking between different invariant representations in terms of robustness, computational efficiency, and generalizability.

Contributing

We welcome contributions to this repository, for example in the form of pull requests.

Contributors

We wish to thank the following people for their contributions to an early version of the software: Victor van Wymeersch, Zeno Gillis, Toon Daemen, Glenn Maes, Ali Mousavi, Lander Vanroye

Support

For questions, bugs, feature requests, etc., please open an issue on this repository.

License

This project is licensed under the MIT License - see the LICENSE file for details.

Citing

If you use this package in your research, please cite the following paper:

@article{vochten2023invariant,
  title={Invariant Descriptors of Motion and Force Trajectories for Interpreting Object Manipulation Tasks in Contact},
  author={Vochten, Maxim and Mohammadi, Ali Mousavi and Verduyn, Arno and De Laet, Tinne and Aertbeli{\"e}n, Erwin and De Schutter, Joris},
  journal={IEEE Transactions on Robotics},
  year={2023},
  volume={39},
  number={6},
  pages={4892-4912},
  doi={10.1109/TRO.2023.3309230}}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

invariants_py-0.3.9.tar.gz (901.3 kB view details)

Uploaded Source

Built Distribution

invariants_py-0.3.9-py3-none-any.whl (460.3 kB view details)

Uploaded Python 3

File details

Details for the file invariants_py-0.3.9.tar.gz.

File metadata

  • Download URL: invariants_py-0.3.9.tar.gz
  • Upload date:
  • Size: 901.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for invariants_py-0.3.9.tar.gz
Algorithm Hash digest
SHA256 657638f000a25fd498c0e9fcca33c786435abb4fb8a538d4eed777786c2d0a6f
MD5 9086e489fe880e08c44e056287d90392
BLAKE2b-256 c87be6c1f4344d3c8ca89933b91b344e6a9a3c35647f8722ab8b2d8fb2a95acd

See more details on using hashes here.

File details

Details for the file invariants_py-0.3.9-py3-none-any.whl.

File metadata

File hashes

Hashes for invariants_py-0.3.9-py3-none-any.whl
Algorithm Hash digest
SHA256 2554996c87c520a255ae133ba76d64e85eb8217aceccebac8cc19c1be9e2dd9f
MD5 4212170e6a9a0d472e758f7360e1a62a
BLAKE2b-256 8bc8f22f3488c767a0980cd38334cdab7ff84580f416c260418950255f35b157

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page